Rooms: The Use of Multiple Virtual
Workspaces to Reduce Space Contention
in a Window-Based Graphical User Interface

D. AUSTIN HENDERSON, JR., and STUART K. CARD
Xerox Palo Alto Research Center

A key constraint on the effectiveness of window-based human-computer interfaces is that the display
screen is too small for many applications. This results in “window thrashing,” in which the user must
expend considerable effort to keep desired windows visible. Rooms is a window manager that
overcomes small screen size by exploiting the statistics of window access, dividing the user’s workspace
into a suite of virtual workspaces with transitions among them. Mechanisms are described for solving
the problems of navigation and simultaneous access to separated information that arise from multiple
workspaces.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management—uirtual
memory; H.1.2 [Models and Principles]: User/Machine Systems—human factors; human infor-
mation processing; 1.3.6 [Computer Graphics]: Methodology and Technique—ergonomics; inter-
action techniques

General Terms: Design, Human Factors, Theory

Additional Key Words and Phrases: Bounded locality interval, desktop, locality set, project views,
resource contention, Rooms, virtual workspace windows, window manager, working set

1. INTRODUCTION

The small size of computer screens is a more serious impediment for window-
based workstations than is often appreciated. This paper presents a window
manager design that effectively enlarges the user’s screen. The design is based
on an analysis of window usage.

Many potential knowledge-intensive computer applications require that the
user interact with a moderately large number of objects. For example, paper
materials, when used for writing a paper, may easily fill a dining-room table
(Figure 1). Furthermore people tend to switch back and forth between parts of a
project and among different activities [2, 21]. For example, a person writing a
paper on a computer workstation may nonetheless read his or her electronic mail
daily, answer letters, perform housekeeping on the computer files, and consult

This research was supported in part by NASA Ames under grant NAG 2-269.

Authors’ address: Intelligent Systems Laboratory, Xerox Palo Alto Research Center, 3333 Coyote
Hill Road, Palo Alto, CA 94304.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1987 ACM 0730-0301/86/0700-0211 $00.75

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986, Pages 211-243.

212 . D. A. Henderson, Jr., and S. K. Card

Fig. 1. Dining-room table being used to manage a complex task by spreading out parts of the
task in space so each part is quickly accessible. The large space simplifies the task.

with students. Each of these tasks has its own objects, such as electronic messages
and file browsers, for the user to interact with. The result is many pieces of
information for a user to look at, manipulate, and track.

When tasks are done with paper, current information is usually managed using
a two-dimensional space in the form of a desk or often a dining table, on which
papers are grouped and arranged meaningfully. This allows information needed
for a task to be placed and ordered in temporary arrangements without the
difficult and expensive effort of assigning formal codes or names. The visual
availability of the papers in arrangement provides memory cues that organize
and substantially ease the task. This natural use of space has been sought for
computer systems in the desktop metaphor interface and its variants [l, 4, 24].
Unfortunately, any straightforward attempt to use computer display space in this
fashion immediately confronts the problem that the display screen is often too
small.

Computer displays are much smaller than desks or tables. Figure 2 compares
the area outlines of different computer displays with those of a desktop and a
dining table. A standard office desk has the area of 22 IBM PC screens, 46
Macintosh screens, or even 10 of the large 19-inch Xerox 1186 or Sun-3 screens.
A dining table is the size of 57 PC screens, 119 Macintosh screens, or 27 19-inch
screens. And, if one were to include the effects of resolution, gray scale, and color
in the computation, the comparison would be even more extreme.

A number of techniques have been proposed for overcoming the small-screen
problem. These can be roughly divided into four categories: (1) alternating screen

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention + 213

125
Dining Table
100 |-
T 715F Desk
L
[
I
o
w 50}
T Paper
Xerox1186 (19in)
Xerox Star {17 in)
25 E 15in
P’A//PC
LI 1+—Mac
o T | L 1 |
(o] 50 100 150 200 250

WIDTH (cm)

Fig. 2. Superimposed outlines of different workspaces. The crosshatched area shows the
size of an 8%-by-11-inch page. Desks and dining tables are very much larger than even
large displays. If display resolution were taken into account, the comparisons would be
much more extreme.

usage, (2) distorted views, (3) large virtual workspaces, and (4) multiple virtual
workspaces.

Alternating screen usage. The user can simply switch the allocation of screen
space from one application to another. The Xerox Star [24], for example, provides
for storing documents in file drawers to be fetched and reopened as needed. The
original Macintosh was a more extreme case, allowing only one application to be
on the screen at a time.

Distorted views. Another way of gaining space is to distort the objects in the
workspace. One of the oldest techniques for doing this, first appearing in Small-
talk, is the use of icons [23]: Windows are shrunk to small pictures that remind
the user of the original window. Overlapping windows, also derived from Small-
talk [14], can be considered a distorting technique: Windows are allowed to cover
each other leaving only a portion to remind the user of what lies behind. Icons
and overlapping windows are probably responsible for making the electronic
desktop metaphor possible at all. But, as Figure 3 shows, in many applications
they are not enough. When the need for screen space outstrips the space available,
overlapping windows can create an “electronic messy desk” in which the windows
interfere with one another. More recently, “fish-eye” distortions have been
explored by Furness [13] and Spence and Apperly [25]. The idea is to force all of
the objects to fit into the screen space by allocating space to objects on the basis
of their intrinsic importance and the user’s current focus of attention. Parts of
some objects may be clipped or their dimensions distorted to cause them to fit.
The Boxer system [8] is a different sort of distorted-view system. A spatial box
metaphor is used to represent many semantic notions of containment. The boxes

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

PaI3INd B SAUI0J3(PUB PIPBO[IAA0 A[IsBa SI 31 ‘[[BUIS ST 2ovdsyiom oY) aoulg Aejdstp mopuis padde[1eaQ

ONOD
Pt w00 !

(ZAN03 LIw 1y Z0
[zaey2 522
paynpaysz zhul
[s4eus pea] 3ucy

{443 265) 34

£9£) sz bue 3

tnber Lned

By smml abe qaed EPL
A3LLF449YsLy 1549
[saeus @3] Liew pa
PCTPLLIRELTY

pasezun 1ou ot ‘pabueys ou dod

401934 N[g
AVIEETHD- VAT |]
e e Aeaug
£6:57 98-~ woaypg
q&:._zo,,_smu_uw

mw

uday
[d0dd Avd aosx

n_u___|_
nciy

aweuay

Ado

TECTO 4Y PEILPI PE:TD

12279 dY PRILRI EIITD
WeW PUIS asmoJg

(AD) adtlye

ZSi1Z 1® 1PN MIN ON
vreererel

TUTWTIAIS 111 INT9d 30173357 53017

Led 19%LUN A4 Y LAPHUUSUTWNHEYH Od dTPLUT IS NYP®3) HoVH!) L4100 11
((Wv341T 400034 40103ALI9-INTAd 33040
({7 3LA9-0INIIZNAD sse asen
(401730 3dA1-LNIW3TI-AVEEY) " -
i 5
(YHOHIYH WY3HLS SEHILNON) m.ﬁw_oﬂ
e «13437-INTdds 13717 473430-1NTdde DN ¥
(1IN
CoAwdd - INTHd e LONG
(391
_.:a\.:‘ AMHILAAY)

EEREENEFETE

T 50I93% awilsT
CENES

1013218 2 %) - ’ pep s

A WY3IELE 4I3HIIDVES s
(IWIL16414

(139%1370%17 LoM

(i0{309ds 30004%HI) WY IaLE 1N0Es0ddngG v
WMILLsald 31
(13841370510 WeIALS »DDW)GA«_J, -.-ﬁzu
(0401034 4IA007-310410- INT4d 4511
PINILLEETS 139973724100 DLAG-INTRA-ITAILINWD 31V LHEYH- 31341 2- LNTdds ONK) 004217

VSR BUL IUWd 1001 Cu TRu 11 4G BU0) 54 W) 10U 510 H M aeid CIBAE1 S11s £ SEU T L 4

(INTLLZEI4 733% 1372410 mxmw

(401234 AZ1S-WI0L-Avadn) 32130 [eHaM3KA 23714

({2379%L0¥3ds 40 (21 THONWAD Qu._m.:n_aum_, HOL32) 4720 by 5 13,

(AIWENLZ0H RN LE0H & INDTAdN¥) (4314003730 1 G den,
GadEha,
(4314093131 x4} bedgny
114303807 g4 vh,
321430340 LR0H MLV
(147 31143034020 1504
3d/L¥3INT ¥
J:W w:uw%wm@:/
(THTIRR JATLIY: VIV SILHISHH T WNTAHG 1 @BOYITTAITIALNI 34
:.:_wq:o:&zs 31345 5204N03: 39008311 {3143} HAUNLE40L LS NS

PHEYH W3 TRANGW S TINDWNAD 43
dN3aL

{U2 40U 40543]

»umxowau

: BRI

"}Sop
(it

-0gET
{3143}!

{5143}

3W0¥dI3
1In%430
170y 430
1393714
1333714
N139H3K
EECENDE]
430138
430439%

Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention . 215

are nested in a hierarchy. Individual boxes can either appear expanded or shrunk
to a symbol, depending on where the user is in the hierarchy.

Large virtual workspaces. Instead of forcing all of the objects to fit on the
screen, another technique is to arrange them in a single large virtual workspace
much larger than the screen. The screen is treated as a movable viewport onto
this space. Sketchpad [26] was one of the earliest graphical programs to use this
technique. Many other systems have since developed their own versions. In
Dataland [1], color pictorial and textual data are arranged in two dimensions.
The user has three screens, one for an overview of the whole space, one for a
detailed view of some portion of the space, and one touch screen for control. The
user can translate or zoom his or her detailed view. As the user zooms closer to
the data, more detail is revealed. In each of these systems, the data are passive—
the user cannot interact with the data other than to view them. By contrast, the
Cedar Whiteboard system [9] also provides translation and zooming over a large
workspace, but individual data elements can lead to opening application windows.
At the extreme of the virtual workspace systems are head-mounted displays
(e.g., the NASA helmet [12]), which monitor user head and body movements to
give the user a complete simulated 3D space.

Multiple virtual workspaces. The simulation of a single large workspace is
natural, but carries over to the system some strong constraints of physical space—
only a limited number of things can be adjacent to any object, for example, and
the space required for the objects and their shapes puts strong constraints on
how the space can be arranged and how densely it can be packed. An alternative
to a single virtual workspace is to have multiple virtual workspaces, that is,
geometrically oriented workspaces linked to each other, perhaps nonspatially.
An example is Smalltalk Projects [14]. Each project contains a number of views
and, when active, takes up the whole screen. Projects are arranged hierarchically,
with subprojects represented in their parents as windows through which the
projects can be entered: these windows are called ProjectViews, or (informally)
doors. More direct access to all the projects can be created through browsers,
which permit referencing by name all the projects at once. In the CCA system
[1, 16] (a descendent of Dataland), whenever a user zooms close enough to a port,
he or she is swept through into a subworkspace. Like Smalltalk Projects these
subworkspaces are arranged hierarchically. A third example of multiple virtual
workspaces is the Cedar programming environment multiple desktop overview
[20]: 16 desktops are shown in miniature. The user selects which desktop to enter
from this overview. Finally, in Chan’s UNIX!-based Room? system [4], each
workspace contains a set of collected icons that provide actions appropriate for
carrying out a particular task: either to move to another workspace (doors) or to
start a new process for the task the icon specifies. Moving to another workspace
provides access to other icons.

}UNIX is a trademark of AT&T Bell Laboratories.

2 We did not discover the existence of the similarly named system “Room” (Chan’s Master’s thesis
at the University of Waterloo [4]) until after we had publicly demonstrated our Rooms system at the
AAAI conference in August 1986. To avoid confusion in this paper, we refer to Chan’s system as
“Chan’s Room system.”

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

216 . D. A. Henderson, Jr., and S. K. Card

A more complex organization for multiple virtual workspaces than the tree-
oriented systems described above is the Feiner et al. electronic book [11]. Pages
in the book (each separate workspaces) are organized into subchapters and then
chapters. Pages may contain pictures, any of which can be active in preset ways.
Among other things, this provides single-action access to other pages of the book.
Pictures can be used in different scales, another variant on the distortion
technique.

At the extreme of increasing complexity of structure are the hypertext systems,
characterized by small, often textual, networks of workspaces connected with
arbitrary patterns of typed links. The earliest of these was NLS [10]. More recent
examples are PROMIS [17], ZOG [22], and NoteCards [15]. PROMIS and ZOG
display a single node at once; NLS provides access to a subtree of nodes, screen
space permitting; and NoteCards provides access to any arbitrary set of nodes.
Motion among the nodes is by traversing links.

The above techniques make progress toward solving the small-screen problem,
but precipitate two new problems, which arise when not all the information is
visible on the screen at once: (1) the problem of navigation (how to find objects
in the workspace) and (2) the problem of arranging simultaneous access to
separated information.

The problem of navigation. This is the user’s problem of finding the way to
information without getting lost. In large virtual workspaces with a strong
physical model (Dataland, Whiteboard, etc.), the spatial analogy is a powerful
space organizer. Thus these systems base much of their navigation on translating
and zooming and may provide both global and local views [1]. As in unfamiliar
cities, however, it may still be possible to get lost or not find what one is looking
for. In systems with multiple virtual spaces (e.g., Cedar, Smalltalk Projects), an
overview can also be provided if the number of virtual workspaces is not too
large. In hypertext systems (e.g., Electronic Book, NoteCards) the task is harder.
Here, the navigation issue is not aided by a strong physical model, and the
separate nodes are related by a tangle of links. Visual presentation of the links
may be more confusing than enlightening. One solution is presentations of local
connectivity (Electronic Book, NoteCards); another is browser presentations of
nodes (Smalltalk Project Browser, Electronic Book chapter structure, NoteCards
Browser).

Simultaneous access to separated information. It is often necessary to bring
together two or more pieces of information from separated parts of the workspace.
In fact, the same piece of information may even be logically associated with more
than one part of the workspace. In some systems, particularly those with a strong
spatial model (e.g., Dataland), this presents the difficulty of having to destroy
the old organization to gain the new. Of course, one can make copies, but copies
have coordination difficulties if the information can change. Distortion (fish-eye
views, icons, overlapped windows) provides another solution: The arrangement
remains fixed, while the distortion can change to make the desired information
simultaneously accessible. Sharing information (the same picture can be used on
different pages in the Electronic Book) is another solution, one requiring more
sophisticated information structuring. In the extreme, hypertext systems (e.g.,

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention . 217

NLS, NoteCards) provide for multiple linkings, which, in turn, provide multiple
clusterings through separate views.

In the system we propose, our object is to prototype a workstation window
manager that allows users to operate with larger collections of objects. Although
a number of systems have developed techniques for mitigating the small-screen
problem, no generally accepted framework for understanding the problem itself
has vet emerged. As part of the process of advancing these techniques, we wish

to begin building an understandmg of the problem to aid us.

2 AN

2. ANALYSIS OF DESKTOP INFORMATION USE

{
Instead of just developing another system to mitigate the small-screen problem,
it is useful to construct some analytical understanding of the key constraints
acting upon desktop information use. From this understanding we can gain
abstractions with which to organize the design space and gain insight into
pi‘Oi‘ﬁiSii’ig regions of the deSig"‘u space for Slui‘lg a dcmgu

Basically, our analysis is that (1) the high overhead of moving and reshaping
windows that users must often suffer with overlapped window systems derives
from a severe screen-space resource contention lying just below the surface, but
that (2) we can partially overcome this resource contention by designing a virtual
workspace manager that exploits the statistics of window reference.

2.1 The Small-Screen Problem

Informally, the resource contention can be described by the following gedanken
experiment: Imagine the task of writing a paper using a dining-room table.
Drafts, figures, references, outlines, and notes can be spread on the table in a
way that makes them easily accessible as the writer proceeds. Imagine the same

task now done on an office desk. There is still considerable workspace, but
nnrhnne gome of the information must he nrlpd fnm:fhm' npnpemfnhno‘ occasional

LLlasiviial

ﬂlppmg through piles. Now imagine the task on a very tiny desk. Much of the
writer’s time must be devoted to thrashing about searching through papers: New
papers dredged up top will cover other papers still in active use, and these, in
turn, will need to be dredged up and will cover other papers in use. In addition
to the immediate time consequence of thrashing, the ensuing chaos will tend to
alter the task itself, pushing the writer toward more formal methods of accessing
information, such as file folders and note cards, which have their own overheads:

time to categorize, memory for categories, and conceptual ambiguities.

More formally, an analysis of resource contention leading to “thrashing”
behavior is available from the study of virtual-memory operating systems [7],
and we can apply some of its features to the small-screen problem. In a virtual-
memory operating system, programs are run in a large, virtual-address space.
This virtual-address space resides on some secondary storage medium, such as a
rotating disk, much larger (and also much slower) than the physical address
space available in the main computer When reference is made to a page in

wvirtiial not aotnally regidant 3 tha somnutar’s ry a “naca
virtuai memory not actuany resiaent in tne computer s main memory, a yasc

fault” occurs: A page in physical memory is written back to disk if it has changed,
and the referenced virtual-memory page is copied to main memory in the vacated
siot.

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

218 . D. A. Henderson, Jr., and S. K. Card

CLUSTER 1 CLUSTER 2

CLUSTER 3

Fig. 4. Locality sets and possible transitions between them. Each circle represents
a cluster of page locations that tend to be referenced together in time. The line
represents the locus of program control as it transitions back and forth between
such clusters. Programs spend most of their time in clusters of page references,
represented by the circles, and relatively little time (from 2 to 5 percent) in transitions
betweenclusters, yet typically half of the page faults occur during the transitions.
(After Madison [19, p. 26].)

Two principal factors determine the success of this scheme: (1) the size of the
main memory available relative to the size of the program and (2) the statistical
distribution of the program’s references to virtual memory. With respect to the
latter, a program that exhibits locality of reference, that is, a program whose
references to virtual-memory page locations cluster together in time, causes fewer
page faults and hence requires much less time to run (or much less main memory
to run at a given speed) than one whose references are randomly distributed.
Fortunately, most programs progress in distinct locality phases [7]: That is, most
programs progress by making frequent references to a small set of virtual-memory
locations (called a locality set) followed by transition to another small set of
virtual-memory locations (Figure 4). Page faults tend to be relatively sparse
within phases, but dense within transitions. For example, Kahn measured several
programs [18, cited in 7] and found that the programs in his sample spent
98 percent of their time within some phase. But during the 2 percent of the time
they were in transition, 40-50 percent of the page faults occurred [7, p. 72].

Reasons for locality in program reference behavior are not difficult to find.
First, programs typically consist of blocks of memory that are executed more or
less sequentially. Second, programs often have loops that iterate over the same
locations. Finally, programs usually involve bursts of computations on related
variables or data structures.

The reference characteristics of programs, then, essentially derive from two
factors: (1) the sequential storage structure of most program code as assembled
by a compiler and (2) the way in which references to the same variables tend to
be clustered in time. It is important to note that locality of reference is strongly

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention . 219

100

90 L Fig. 5. Window interreference interval distri-
bution. The graph plots the frequency with

80 which different numbers of window references

s> 10 intervening between references to the same
Lz) 60 window are observed. For example, there were
a 50 10 instances in which the same window ap-
S peared as the fifth window reference after it
e 40 had previously appeared. The graph gives evi-
30 dence for considerable locality in window ref-

20 erences. If the references were uniformly ran-
dom, the distribution would follow the dotted

10 line. The actual distribution is heavily skewed

toward short interreference intervals indicating
o 5 10 15 20 locality. (From Card, Pavel, and Farrell [3].)
INTER-REFERENCE INTERVALS

evident, even when this latter case of reference to variables is considered
alone [7].

For virtual-memory operating systems, the size of main memory relative to the
size of the virtual memory and the high cost of references to secondary memory
are key constraints that drive the performance of the system. Main memory is a
limited resource that is in contention. Operating-system algorithms attempt to
exploit locality of reference in programs to reduce memory contention. Since
memory contention is often a performance driver, reducing it can have a major
impact on system performance as a whole.

For windows (as well as for paper-laden desks), the size of the available
workspace relative to the needs of the task to be done is a key constraint that
drives user performance on the task. Small display screens or desks are limited
resources that are in contention. But, if users exhibit locality of window reference
and a system can make explicit use of it, we can likely make a major improvement
in window manipulation overheads that derive from the small-screen problem.

2.2 Window Locality Sets

Evidence for locality of window reference seems clear enough from protocols we
have been able to examine of users interacting with an overlapped window
system. In the first place we have informally observed such behavior: Users are
often seen to use a group of windows for a while, then delete or shrink most of
them, and then begin building another set. More systematically, the distribution
of window interreference intervals (the number of window references between
two references to the same window) is shifted heavily to the low end (compared
with what would be expected for random window referencing), indicating that
the user in this protocol often went back and forth among a small set (five or
fewer) of windows (see Figure 5).

Other ways of looking at user window behavior suggest a similar conclusion.
We can identify approximately the locality set of windows in active use at a given
time by computing Denning’s working set [5-7]. The working set consists of those
windows referenced in the last 7' references. Figure 6 shows this metric computed
for a user programming Interlisp-D on the basis of those window events detectable

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

220 . D. A. Henderson, Jr., and S. K. Card

WORKING SET SIZE

- N W b_ OO N ® © O
T

180 180 200 210 220
EVENT NUMBER

Fig. 6. Computation of Denning’s working set for win-
dow references made by a user reading mail and program-
ming in Interlisp-D: ————, T = 6; , T = 14. Com-
putation is based on detectable system events. The waxing
and waning of the number of windows in the computation
Jinterval T is clearly visible, but this way of estimating
window locality sets does not show well the boundaries of
the phase transitions. (From Card, Pavel, and Farrell [3].)

by the system. The figure shows a window working set varying between 2 and 10
windows for the fragment of behavior examined.

However, a better metric for our purpose is Madison’s bounded locality interval
(BLI) [19]. This metric overcomes two problems with the classical working-set
measure: (1) that it depends on an arbitrary parameter T, the reference interval,
and, more important, (2) that the interval size T is fixed, with the consequence
that the boundaries between phases are not well defined [19]. The bounded
locality interval is based on the top elements of an LRU (least recently used)
stack that have all been referenced at least once since their formation (see [19]).
The BLI metric has been shown by Madison to correspond well to intuitive
notions of a phase. Figure 7 shows the BLI metric computed over 60 minutes of
behavior on the Interlisp-D system. The computation indicates the existence of
from zero to five windows in a locality set at any time for this fragment of user
behavior. (Had the user referenced windows randomly, Figure 7 would be blank.)

These four indicators—simple observation, interreference interval, Denning’s
working set, and Madison’s bounded locality interval —cannot yet be considered
definitive pending further studies and refinements, but they do at this point all
suggest in unison that users exhibit locality of window reference and that,
therefore, as in the case of virtual-memory operating systems, mechanisms that
exploit this statistical property of user behavior might be developed.

2.3 Tasks and Tools

It is not difficult to suggest reasons for the locality-of-window-reference behavior
observed above. When there is some task to be done, such as reading mail, writing
a paper, or creating a program, the user gathers a number of tools for doing it. In

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention . 221

st]

i U
W0 oo o Lo |
=AM0W0N 000 00 IO]
(LD T

(o] 5 10 15 20 25 30 35
ELAPSED TIME (min)

H
T

NUMBER OF WINDOWS
w
T

oy

(¢}

Fig. 7. Computation of the Madison’s bounded locality interval (BLI) metric. The
computation is based on a user programming Interlisp-D. In order to capture part
of the user’s visual reference to windows, windows in the enviornment have been
programmed to “gray out,” becoming barely readable after 10 s. The windows are
instantly restored if the user selects them with the mouse or the system uses them.
Each rectangle is a locality set plotted according to the number of windows in the
set. The abscissa is time in milliseconds. If window references did not exhibit locality,
there would be no rectangles. With this technique the boundaries of the window
locality sets are easier to see. The technique shows promise, with refinement, for
being able to describe complicated patterns of window use.

most window systems, these tools are each embedded in a window (e.g., mail-
browser windows for mail; text-editor and file-browser windows for paper writing;
program editors, debuggers, and measuring instruments for programming). As
the user moves back and forth among these tools while doing the task, the tool
windows form a locality set.

A task, from the point of view of the user, will therefore tend to correspond to
a phase from the point of view of window reference statistics. Task switching
will correspond to a transition, and we expect it to lead to heavy window faulting.
The design of the Rooms system is based on the notion that, by giving the user
an interface mechanism for letting the system know he or she is switching tasks,
it can anticipate the set of tools/windows the user will reference and thus preload
them together in a tiny fraction of the time the user would have required to open,
close, and move windows or expand and shrink icons. A further benefit is that
the set of windows preloaded on the screen will cue the user and help reestablish
the mental context for the task. (We might even say that knowledge faulting in
the user is thereby reduced.)

3. DESIGN OF THE ROOMS SYSTEM

The window-management system we describe provides the user with a suite of
roughly screen-sized workspaces called Rooms. The overall scheme is shown
schematically in Figure 8. Each Room contains a set of window Placements, each
of which indicates a window, a shape, and other presentation information

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

222 . D. A. Henderson, Jr., and S. K. Card

User Activity | Rooms System Concept

WORK OVERVIEW
TASKS ROOMS
SUBTASKS INCLUSIONS
USAGES PLACEMENTS
ET'S WINDOWS

Fig. 8. Schematic structure of the Rooms system. Users’ work is distributed
among several Rooms, each Room containing a main task. Rooms can be
included in other Rooms. Each Room contains a set of Placements. Place-
ments indicate windows and Room-dependent presentation information for
the window.

(i.e., how a given window is to appear in a particular Room). A key feature of
Placements is that two Placements may refer to the same window, allowing
windows to be shared among Rooms. Rooms may also be included in other Rooms
as a mechanism for allowing the sharing of groups of windows among workspaces.
Our system is implemented in Interlisp-D and uses the Interlisp-D window
package for basic window manipulations.

Figure 9 shows two typical Rooms. The Room in Figure 9a has been laid out
with mail-browsing windows and a mail-reader window. It has a prompt window
for messages (the long black rectangle), two icons with controls for the mail
system, a command typescript window for typing LISP functions, a clock, and
Doors linking this Room directly with others. If the user selects the Door labeled
PROG with the mouse, then the screen changes to the Room in Figure 9b; that
is, the user has the illusion of moving to Room PROG. This latter Room is set
up for doing programming and at the time of entering contains windows in which
editing with the LISP structure editor is in progress. It also contains a Back Door
(the Door in Figure 9b in reverse video) showing the Room from which the user
came (and to which the user could return by means of a single mouse selection).
To help the user navigate, the system has an Overview (Figure 10) that displays
miniature versions of all the Rooms in the total user workspace. Any Room can
be entered from the Overview, and indeed Placements can be copied, deleted,
moved, shaped, and examined at full size from this Overview. Figure 11 shows
the set of Rooms and direct Door links of an actual user workspace. The diagram
has an obvious similarity to the phase and transition diagram of Figure 4.

The design for Rooms is based on our analysis of the key constraints on user
window behavior as developed in the previous section. Since on present evidence
much of the user housekeeping for an overlapped window system derives from
contention for limited screen space, the design gives the user more virtual space.
Since we expect the use of that space to be characterized by phases and transitions

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention . 223

organized around tasks, this total virtual workspace is divided into multiple
virtual subworkspaces through Doors (or the Overview). Our basic analysis,
therefore, has helped suggest a promising position in the design space at which
to site a design. But the design decisions to which we are thereby led have further
entailments of their own. The design for Rooms reflects solutions that arise not
only from the basic analysis, but also from these entailments—issues that may
have little relation to the original problem that Rooms was designed to solve, but
whose resolution is necessary for the system to be viable. As is the case for all
systems in which information is not all visible on the screen at once, the Rooms
system must face entailed issues that derive from (1) problems of navigation and
(2) problems of arranging simultaneous access to separated information. A third
group of entailed issues focuses around (3) simple user tailoring of system
appearance and behavior. The major entailed design problems and their solutions
are summarized in Table I. It is simplest to begin with problems of simultaneous
access.

3.1 Simultaneous Access to Separated Information

Some windows, such as the invocation of a text editor on a particular file, are
strongly associated with a particular task. Others, such as a clock or the command
typescript window, are relatively independent of different tasks. Each Room
tends to be organized around some dominant task, such as writing a paper or
reading the mail. The windows contained in a Room provide the tools for the
task and, indirectly, the material to which the tool is being applied (e.g., a window
containing a text editor opened to a particular file). But tools and tasks can be
combined in different ways. A single-purpose mail Room might have just mail-
transport tools, mail files, and mail sorters in it, whereas a project Room might
have a mail reader, a text-editor window, and a programming editor. So, although
it is easy to recognize the global need for some sort of simultaneous access to the
same windows across different Rooms, there are, in fact, a number of specific
cases to be sorted out before sharing can actually be accomplished. These can be
classified as (1) sharing tools across tasks, (2) workspace-dependent window
presentations, (3) sharing collections of tools across tasks, and (4) carrying tools
to another workspace.

3.1.1 Sharing Tools across Tasks

IsSUE 1 [Multiple instances of windows]. Some windows need to appear in more
than one workspace.

DESIGN SOLUTION. Multiple Placements of a window.

The desire to have versions of the same window appearing in more than one
Room forces us to the abstraction of a Placement. A Placement is a window
together with location and presentation information.

Placement = Window + LocationInRoom + PresentationAttributes.

A Placement generalizes the concept of a window, separating the tool aspects of
it (the fact that a particular set of editing commands work inside it) from its
appearance on the screen.

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

iday @) pT o e4ae
101 &

wd-paes a0y pew Mo

seus s0¢] Bunrs | sus
wiedbodd

(AYOIHL

U UsR TS
peby 40k (172

1 Buey s

—:_«:..:cL

pew 181 aiepdp oon.._ar PABMIO] JIMEUY uuu_o_u:_._ 219130

BLE0 Y §o 3190 Bunus, aan

FLIER JETY

raeus gezz L] |

O SF21EFT

L LN 3 ;) TE hen e

B

)

*5100p 918 (,,
100p [pued 8y} yloq swooy asayl u] Sutwwreidord I1of (q) wooy

sa

|
|
B
@
&
&
2
&
a
|

GEnessaaEw
BEnncsauER

MBIAISA(),, PaYIeW auo oY) “Fa) saindy padeys-uojing ay3 pue saIndy

[t

‘[rewr Surpeal I0J Pasn §i (B) WoOY ‘SWOOY Jo sa[dwexs om], 6 810

(0 3Lonty 1IN A

EEE B

-

aan

) S S T s s s s s s

226 D. A. Henderson, Jr., and S. K. Card

T ——

| .

\\\\x\\\\\\\\[\ \
N

TRO

\

T TG
TEMEN

N [T

Fig. 10. Overview. The Overview contains pictograms of the Rooms arranged alphabetically.
It also contains a message window for communicating with the user and buttons for saving
and restoring the set of Rooms. This Overview shows a CONTROL Room that is included
in every Room except the HELP Room. Windows contained in a Room because they are
part of an included Room are rendered in gray. EXPANDing the window in the HELP
Room provides the user with a one-page illustrated system manual.

3.1.2 Workspace-Dependent Window Presentations. Windows shared by dif-
ferent workspaces may need to have different locations in different workspaces.
This is immediately obvious in application, but would not be possible if the
Rooms system merely contained lists of the windows present in each Room.

ISSUE 2 [Workspace-dependent shared-window positions]. Shared windows
need to have independent positions in different workspaces. Repositioning a shared
window in one workspace should not affect its position in another workspace.

DESIGN SOLUTION. Position is part of a Placement, not a window.

The independent location problem is also solved by the Placement mechanism.
A Placement contains an x, y position for the bottom left corner of a particular
window in the particular Room.

It is possible to go beyond the simple location of shared windows in the
different Rooms to other aspects of presentation. For example, it may be desirable
to have a text-editor window be large in one Room, but small in another. Or we
may want the text-editor window to be squarish in one window, but tall and thin
in another so as to fit into a differently arranged space. Or we may wish a window
to have drop shadows in one Room, but not in another.

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention . 227

PROJECT PROJECT PROJECT PROJECT PROJECT THEORY
60 61 63 65 66
4
1 PROG
OFFICE N

SunRoom
\ MAIL

ACTION 1oL

MAIL-
FILES TIME

Fig. 11. Transitions among Rooms in a user’s workspace. The diagram shows which Rooms have
doors leading to other Rooms. It is an analog of Figure 4. Transitions through the Overview or pop-
up menu are not shown.

IssUE 3 [Workspace-dependent shared-window presentation]. The shape, size,
icon shrink location, drop-shadow attributes, and other aspects of the presentation
of shared windows need to vary according to which Room the windows are in.

DESIGN SOLUTION. Presentation attributes are properties of Placements, not
windows.

Fortunately, the Placement mechanism is again a good solution to this issue.
The Placement for each window in a Room contains slots for the presentation
dimensions on which windows can vary.

3.1.3 Sharing Collections of Tools across Tasks. The issues above have derived
from cases in which we want the same windows to have location and presentation

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

228 . D. A. Henderson, Jr., and S. K. Card

Table I. Summary of Design Issues That Arise in Going from the Virtual Workspace Idea
to a Usable System

Issues Design solution
(1) Interface issues of simultaneous access to separated information

Issue 1 Multiple instances of windows Placements

Issue 2 Workspace-dependent window locations Placements

Issue 3 Workspace-dependent window presentations Placements

Issue 4 Collections of windows Room inclusion

Issue 5 Bringing windows to other workspaces Baggage

Issue 6 Keeping windows along with user Pockets
(2) Interface issues of navigation

Issue 7 Reversibility of workspace transition Back Doors

Issue 8 User orientation (1) Pop-up menu of Rooms

{2) Overview
(3) Expanding pictograms
Issue9 Showing workspace connectivity Wiring diagrams

(3) Interface issues of tailorability
Issue 11 Rooms redecoration (1) Maintain normal LISP
(2) Persistence of modifications
(3) Pop-up menu
(4) Overview commands

Issue 12 Unanticipated modifications structure (1) Editable Rooms data
(2) Layout language
Issue 13 Saving/restoring workspaces Save/restore buttons

aspects that can be different in each workspace. But there are other cases in

hisk gt th o ia m 3 m 1
which just the opposite is true. An example is that we may wish to define a

collection of windows to serve as a sort of control panel for many Rooms. Such
a collection might contain a command typescript window (where typed-in
commands can be evaluated), a clock, indicators for system performance, and
Doors to some standard places.

ey 11 e T

issuk 4 {Collections 0[windows] Some groups ul windows need to be defined
as a collection whose location and positional attributes remain constant across
workspaces. Changes to any of the windows need to be propagated to all workspaces
containing them.

DESIGN SOLUTION. Room inclusion.

Our solution to this problem is to allow Rooms to be included in other Rooms.
A control panel is designed by making up a Room with the clock and other useful

USRS Iy PO P N i oz T;malsocinn AFf ann

tools pOSiLiOI‘leu togeuner. We then make this Room an Inclusion of each Room
that is to share the collection of windows. Resulting Rooms, when displayed to
the user, will contain the combined set of windows. Figure 10 shows a
control panel Room marked CONTROL that is contained in another Room.
Figures 9a and b contain the windows in this control panel.

Txy

3.1.4 Carrying Tools to Another Workspace. So far we have not discussed how
sharing of windows across workspaces arises. How can the user take a window
that is in one workspace and carry it to another?

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention .« 229

ISSUE 5 [Carrying windows to other workspaces]. How can a set of windows be
copied from one workspace to another?

DESIGN SOLUTION 1. Baggage.

Our solution is to allow the user to carry some windows with him or her as the
user transits to another workspace. The metaphor is that the user has Baggage

that can be packed full of windows (actually, copies of Placements). The user
presses a key while selecting a Door, which puts the user into a mode (with
suitable feedback) in which he or she can point to all the windows wanted as
Baggage. The Baggage goes through the Door with the user, and the windows
assume their former positions, but in the new Room. The user can then reposition

the windows in the new Room as desired.

2 e anma, T s L)
i CU, ag.

to th

[=]

tog Overview, then the MOVE
e la

cements rapidly from one
Room to another.
Finally, there are applications in which the user wishes to define windows that

are present no matter which workspace is used.

ISSUE 6 [Keepmg windows along]. In some applications windows need to be

meCArIn o 2nith tho sianme eatbhon fhoa L sorbonae
associated with the user rather than the wor RSpace.

DESIGN SOLUTION. Pockets.

The user can declare one Room to act as Pockets. This Room will be tempo-
rarily included in any Room the user enters. Thus, whichever windows are placed
in the user’s Pockets will be presented (at the same location and with the same
presentation attributes) in all Rooms. A special application is that control panels
can be included in a user’s Pockets, if the user wants all Rooms to have the same

3.2 Interface Issues of Navigation

The Rooms system attempts to reduce space contention on the screen by
distributing the user’s windows into window locality sets in virtual workspaces.
But this very fragmentation of the space creates a navigation problem: How can
one keep track of the windows no longer visible and find one’s way through the
Rooms? If this challenge is not met, we shall only have replaced the electronic

mesev desk with an electronic maze. To keen the overall efrafnmr viable, interface

IRUSSy MOSM VWalal Qi CiOCLIVILL LIAKRLT. 2 U ACCOE vill UVEIQLL SULAWEY Viaw:il, L wwiial

solutions must be found for this problem. Actually, the overall issue of navigation
contains several subissues: (1) returning to a Room, (2) general orientation and
finding other Rooms, (3) finding windows, and (4) finding which Rooms connect.

3.2.1 Returning to a Room. Frequently a user wishes to return from a present

n +n tha diatal R Ths h h1 L N
noom o ine imme\uauexy prn’or n#OOm. 11is ¢an 0€ a prooviem Necause L/o0Ts are

one-way only. It can be even more of a problem if the user has forgotten the
name of the previous Room or even what was being done before an interruption.

ISSUE 7 [Reversibility of workspace transitions]. How can the user return to a
previous workspace?

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

230 . D. A. Henderson, Jr., and S. K. Card

DESIGN SOLUTION. Back Doors.

Each time a user enters a Room, a Door to the previously occupied Room is
created and placed at a certain locatlon. This Door shown in reverse video to
indicate that it is a Door back to the previous Room. An example is the reverse-
video Door at the bottom left corner of Figure $b. Further, the Door is destroyed
after one use, and no Back Door is created when a Back Door is used to change
Rooms. Back Doors reduce the task of returning to a previous Room from a
major navigational undertaking to a trivial matter.

Other solutions are possible, but have disadvantages: All Doors could be
bidirectional. The problem with this solution is that, when a Door is created in
one Room, it would require placement of the Door in both the current visible
Room and the indicated invisible Room. Either we would have to be willing to
allow the new Door to appear over whatever happened to be in the other Room,
or we would have to have an automatic window placement scheme (not a bad
idea, but one beyond our current project). Also, Doors back to included Rooms
would be conceptually obscure. Another problem with bidirectional Doors is that

we want Back Doors to occur whether we entered the Room through a visible

Door, through the pop-up menu, or throuch the Qverview. In our system the

as00L, LiliDWpid viid Mp AT, VI VIR vaAlT 442 O\l =vedil Wil

Back Door is destroyed after one use because the meaning of Back Doors is to
help the user return to where he or she just was, and multiple Back Doors would
confuse this concept or complicate it with more interface mechanism.

3.2.2 General Orientation and F inding Other Rooms. A related problem is that

............ Al nnmdad A mrrrnhan Af Dancaa mawancas +tha 110aw

l«lle user camn Ub'bulllﬂ LubUIH:ubcu nAs buc HUIIct 01 AWULIID 1HLITaded, l/llc unci
can find it difficult to remember what Rooms exist. If there were to be a Door
from every Room to every other Room, the Doors themselves would soon become
unmanageable and consume inordinate amounts of screen space. Yet, without a
fully connected topology, the space begins to become complex and difficult to
remember—an electronic maze.

ISSUE 8 [User orientation]. How can users remember (or discover) the route to
particular workspaces?

DESIGN SOLUTION 1. Pop-up menu of Room names.
The soluti

The solution from within a Room up mer
names of the other Rooms (see Figure 12). The menu is a reminder of what
Rooms exist, permitting selection of the one the user wants to go to. This solution
is cheap in terms of response time, and, just as important, it is always available,
even if the user deletes all the windows on the screen. However, it does not

remind the user of the contents of the different Rooms.

ion from within a Room is to have a pop-up menu that gives the

DESIGN SOLUTION 2. QOverview.

General orientation is achieved through the Overview. Figure 10 shows the
Rooms Overview screen. The main feature of the Overview is a set of Room
pictograms, reduced pictures of the Rooms, arranged in alphabetical order. All
rooms are displayed, and the Room pictogram size is adjusted as Rooms are
added and deleted. Windows within each Room are represented as rectangular

window pictograms. From the Overview the user is reminded of the overall 1ayout
ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention . 231

B (Inl g
Include a racom
Edit background and inclusions
. Petrieve windows
SendMail Clase windows in region

rt. kail

art thie window rmanager
h i 0w marn i

Fig. 12. Pop-up menu for invoking Rooms functions. Each of the small left triangles
indicates where further expansion of the menu is possible (a standard Interlisp-D
device). The menu has been expanded to show the main functions available through
the menu. Since this menu is always available (by pressing the right mouse button
when the cursor points to the screen background), the user is able to invoke Rooms
commands even if all of the windows in a Room are deleted.

of a Room. The user can select a Room to enter by holding down the OPEN key
while selecting a Room with the mouse. Design solution 1 (a pop-up menu) is
fast, but gives only the names of the other Rooms. Design solution 2 (the
Overview) takes a little longer, but gives the user much more information. The
choice of one of these depends on the user’s state of knowledge.

3.2.3 Finding Windows. Although the Room name and the shape and arrange-
ment of window pictograms in the Overview definitely help the user’s orientation,
still more help is often needed to enable the user to locate particular windows or
to be reminded of what particular pictograms mean.

ISSUE 9 [Window identification]. How can the user identify particular windows
in other Rooms from the Overview?

DESIGN SOLUTION. Expanding pictograms.

The Rooms system permits the user to “expand in place” window pictograms
pointed at by the mouse (Figure 13). It is worth noting that, whereas the Overview
diagram is a space-multiplexed way of showing the whole view, the EXPAND
key is a time-multiplexed technique. For reasons of speed, legibility, and versi-
militude, the window is shown at full scale, as indicated by the selected Placement,
instead of the information in the Room being scaled to fit the pictogram.

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

232 . D. A. Henderson, Jr., and S. K. Card

"W
N i T O el

.‘\\‘

§\A€T}0N\\ | CONTROL, HELR, | \

2 //////

g

3 e "

R
Parsing folder,,, done, WM\
Display Delete Undelete Answer Forward Hardcopy Move To Update Get Mail M\\\
Ml browser for J0IEFLIZPFILES MAIL-SHI- ST MalLt
23 Jun ULLLASDUKOOPMANT' ¢ Tutorial suggestions [1487 chars]

1
2 26 Jun guevara.pa . phone; Jack Carroll; 914/788-7733 [219 chars)
3 2 Jul William Buxton {willyde boston mini-meeting [15881 chars]
4
S

7

5 Jul william Buxton {willy¥%¢ Boston Meeting [2084 chars)
10 Jul cagnonipa Fhone: Fan Beckerd18-273-6853 (194 chars]

_

IR

*.;;;......; \'. vy
N ZL L TENN Y

i 2
&\&&\\&\ !

’\\\\\\\\\ ’Q\’\'\'\\Q\'\i\\:\"\\\\?'\\“\'\'\’ﬂt\"

63 Pa ersﬁ“‘?i;\l! 5BRO) \ 66R ;
N&m\&m&&;\\\\%mm“\mmm\

T RN =112
\ \\\\\avZ |

3.2.4 Finding Which Rooms Connect. From the Overview diagram, it is difficult
to discover which Rooms have Doors to, or are included in, which other Rooms.

IssUE 10 [Workspace connectivity]. How can the user see the connections
between Rooms?

DESIGN SOLUTION. Wiring diagrams.

A solution to this problem is to trace out on the display a diagram showing the
connections between Rooms. Figure 14 shows an example of such a diagram
(DOORS-0OUT, the set of Rooms to which the subject Room has Doors). Several
such diagrams are available DOORS-OUT, DOORS-IN, INCLUDES-
ROOMS, and INCLUDED-IN-ROOMS. Because of the complexity of the
possible connections between Rooms and the desire not to rearrange the Overview
display to simplify the connection lines (which would drastically decrease Room
pictogram size), having the user interrogate one Room at a time is more successful

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention + 233

&u L_J\\\

AL
F—ﬁ'—""’"’l

%

\\\\\\\\\\\ \\\\\\\ \&\0\& \\\\\\\\\\Y\ g \

Y1 o0 \ \ _ \
g\\\ D A N

—] 0 -;-:3

\\\\\\\\\\\\\\\\\\\\\\ SRS

RG5!

N

\\\\\\ \\\\\\\

SRR

e E—— S——

Fig. 14. Wiring diagrams. This is another time-multiplexed technique
that aliows the user to see which windows are connected to which others.

than asking for all the connections simultaneously. This is another case in which
we fall back to the time-multiplexing of information, since showing all connec-
tions at the same time reduces the display to a tangle of lines.

3.3 Interface Issues of User Presentation Tailorability

User’s workspaces change continually. Provision must therefore be made for
users to reconfigure their workspaces easily: altering windows; adding and delet-
ing Doors; creating, deleting, and renaming Rooms. All these can be expected to
occur in the course of normal work.

3.3.1 Manipulating Rooms, Windows, and Doors

SUE 11 {Room redecoration]. How can users manage the creation and deletion
indows, Doors, etc?

ron. 1) nn..".nnw. o
ISP-L/ ENUIronimeric.

The Rooms system is designed so that users have the illusion that they are in
a normal Interlisp-D window environment. Thus they can engage in all the
normal Interlisp-D window manipulations: creating, destroying, copying, and
moving windows or shrinking them into icons. Closing a window that exists in
more than one Room brings up a menu giving the user the choice of deleting
only this Placement or of deleting all Placements and closing the window itself.

1 Qn OLUTI

DESIGN SOLUTION 2. Persistence of window modifications
related part of the design solution is that small changes users make in the
course of th‘“r "vrk pers;st over pnfnrlng and lnsunn(r Rooms. When rpannrung

workspace, the user finds it arranged just as it was when he or she left it (the
contents of shared windows may well have changed, of course). Modifications to
a Room are accurately reflected in the Overview.

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

234 . D. A. Henderson, Jr., and S. K. Card

DESIGN SOLUTION 3. Pop-up menu.

Ha al . in th + +h 3
Here, as elsewhere in the system, we maintain the principle that a basic set of

system capabilities (creating Doors, going to other Rooms, going to the Overview,
recovering lost windows, etc.) (see Figure 12) is maintained on a pop-up menu
that is always available. One reason for this principle is to protect the user: Since
completely free to design the workspace, the user could delete all the Doors from
this workspace, including the Door to the Overview. Or the user could create a
Door to a new Room, then enter it; this would leave him or her in a completely
blank Room. In such circumstances the pop-up menu provides the user with

d + trolg T+ A ithaont 1a43 t+h
agequate rescuc Conuross. it ades s6 witnodut VAGlauiﬂg anouner priﬂc:pxe, that the

user should be free to determine the total physical appearance of a Room. Doors
are thus accelerators that trade screen space for faster speed. In fact, the Overview
just continues further along this trade-off, trading the entire screen space for
rapid manipulation. This trade-off among space, speed, and robustness is the
basic reason for having more than one solution to design issues.

DESIGN SOLUTION 4. QOverview commands.

e n Amamad Tanna ralea mana thanm Ama Panan far avarmnla maging

Some uptua.uuua u_y users involve more than one noom, ioT eXampie, MOVINg
windows from one Room to another or copying a Room. To make these easier,
the Rooms system provides a set of commands available in the Overview
(Table II). Generic commands (COPY and DELETE) can apply either to a
Placement of a window in a Room or to a Room itself, according to which button
on the mouse is used to select the object. Other commands (MOVE, RESHAPE,
RENAME) apply only to one or the other.

An easy way to create a new Room, with a layout and Placements the user

1:1 NNDV A +h
likes, is to press COPY and then select an existing Room. The system asks for

the name of the new Room, then creates the new Room, and rearranges the
Overview to show it (reducing the size of Room pictograms if necessary). The
user could then delete any unwanted windows in the new Room by holding down
DELETE while selecting the window pictogram with the mouse “Placement
button” (left button). A similar mechanism can be used to include one Room in
another.

3.3.2 Extended Behavior and Appearance. Although Rooms provides a number
of single methods by which users can tailor their workspaces, we believe it is
prudent to provide for a system’s natural evolution by supplying escape hatches
that enable more sophisticated and daring users to extend the system or modify
it to serve their own purposes. Rooms descriptors are the mechanisms by which
the advanced users in the community can achieve new effects and extensions

alolos sortdle niad —alaasl 1135 avatars A 1indanctanding all jda nawma Ginanaafiil

quxblu_y wilrlioun u:uuuu.lug bllC b_ybI/Uu.l VI Jdlucisvaliuiilyg all its parLuw. wSUCCessiu
features are then given more general user interfaces.

ISSUE 12 [Ifnnnfu’lnnfpd mnrhfmnfmnc] How can we nrnmdp a means for

systems programmers to evolve the system by creating more complex effects?
DESIGN SOLUTION. Editing of Room descriptors.

Each Room can have associated with it expressions that will be evaluated in
conjunction with certain significant events (creating a Room, leaving a Room,

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention - 235

Table II.

Overview Commands

Command

Mode key(s)

Description

Overview commands for manipulating Placements®

Move MOVE, M A Placement is moved within a Room or from one
Room to another Room.

Shape SHAPE, S A Placement is reshaped within a Room or into
another Room.

Copy COPY, C A copy of a Placement is made in another Room.

Delete DELETE, D A Placement is deleted from a Room.

Expand EXPAND, ? The window associated with a Placement can be

Overview commands for manipulating Rooms®

temporarily viewed as the Placement indicates.

Enter OPEN, O The Overview is left and the indicated Room
entered.

New NEW, N A name is requested and the Room is renamed.

Edit EDIT, E A structural description of the Room is made avail-
able for editing. The changes take effect when
the editing is finished. More than one Room may
be modified at a time, permitting copying struc-
ture from one description to another.

Copy COPY, C A name is requested and a copy of the Room is
made.

Rename RENAME, R A name is requested and the Room is renamed.

Delete DELETE,D The Room is deleted.

Doors-out DOORS-OUT The set of Rooms to which Doors in the indicated
Room lead is displayed in Figure 14.

Doors-in DOORS-IN Like Doors-out, but the set of Rooms that have
doors into the indicated Room is displayed.

Includes INCLUDES The set of Rooms that the indicated Room includes

Included-in

INCLUDED-IN

is displayed in a diagram similar to Figure 14.
Like Includes, but the set of Rooms in which the
indicated Room is included is displayed.

Overview commands for manipulating collections of Rooms®

Save SAVE A set of Rooms is indicated by selecting maps
(default is all the Rooms), a file name is re-
quested, and a description of the set of Rooms is
written onto the file.

Restore RESTORE (AUGMENT) A file name is requested, and a set of Rooms is

(Augment) reconstituted from the descriptions on that file.

The set of current Rooms is replaced (extended)
with this reconstituted set.

®* These commands are issued by depressing a mode key and buttoning the pictogram for the Placement
with the left button on the mouse.

* These commands are issued by depressing a mode key and buttoning the map for the Room with
the right button on the mouse.

¢ These commands are issued by selecting button-shaped windows appropriately labeled.

placing a window, hiding a window, saving a Room on a file, or restoring a Room).
These are made available to the (advanced) user by making a descriptor of the
editable Room through the normal structured program editor. A description of
the background for the Room, an expression in a layout language (Table III), is

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

236 . D. A. Henderson, Jr., and S. K. Card

Table III. Layout Language for Rooms Background Graphics

Specification Description
(WHOLEBACKGROUND shade) Shades the whole background.
(WHOLEBACKGROUND bit map) Tessellates the whole background with the bit map.
(BOX shade region operation) Shades a region using the graphic operation. Graphics

operations are replace, paint, erase, and invert.

(FRAME shade region width operation) Frames a region with a shaded frame of a particular
width using the graphic operation.

(BITMAP bit-map region operation) Places the bit map clipped by the region using the
graphic operation.

(TESSELLATE bit-map region operation) Tessellates the region with the bit map using the graphic
operation.

(TEXT string font position operation) Places the text in the font starting at the position using
the graphic operation. In this operation graphics op-
erations inciude an extension for describing drop
shadows and smearing.

(BORDER shade) Sets the border region (from the edge of the screen to

tha hasal af tha dienlav) t4 ha tha shade
tne Oeze: o1 tne Qusp:ay; U6 0¢ i€ snaqe.

(IF (condition spec . .. spec) . ..) Carries out the specifications contained in the first
clause whose condition is satisfied. Conditions are
Interlisp-D forms treated as predicates.

(EVAL action) Escape to Interlisp-D: Action is an Interlisp-D form that
is evaluated, presumably for its graphic effect on the
background.

(COMMENT...) A message to humans that has no effect on the back-
ground graphics.

Notes:

The background graphics for a Room is described by a list of graphic specifications that are
executed in order, each affecting the results of the ones carried out before it.
All arguments can be either literal (for simple expression of the common cases) or forms to be

evaluated (another escape clause to Interlisp-D).

also part of the Room descriptor. By holding down the EDIT key while pointing
to a Room in the Overview, the user can “turn the pictogram of the Room around
to reveal the clockwork mechanisms on the back” (Figure 15). On completion of
editing, the system checks the structure of the Room descriptor to provide error
protectlon before renderlng the Room. This editing facility has been used to

1.::311 mmndn snanl Lanlgrniinde and far athar taalra annech

build elaborate 8T apuu,ax DaCKgroundas anda ior ouner iasss, suCa as aed
whether certain files are loaded before entering a Room.

3.3.3 Saving and Restoring. Finally, the tem will not be successful unless

it is poss1ble to save, restore, and add to a user’s sulte of workspaces via
information stored on files. If a system crash or reload/relmtlahzatlon means

that the user must rebuild a suite of Reoms from bu‘dun few users will pe!‘blbb,
and Rooms will not be successful in helping users to manage their screen space.

oc 0 con o o user save an restore
e5). fA0W can a user save a Sto

DESIGN SOLUTION. Save/restore buttons and Room descriptions.

S i/ 1

It should first be realized that a Room cannot be saved directly. Rooms contain
complex structures including windows, large bit maps, file pointers, network

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention . 237

.\ ‘.“\“\ \§

(R e:x'pre;—‘-s on -
CWML Y IEY SR
2 I0L
CEGET SQUARES BHD

[B0

{ SHADE B5535)

{REBIOM

{EYAL (CREATEREGION
6 @

SCREENWIDTH
5}

\\

P60"WM\\\R61:P
\c\§\j\>\\{\\\\\\\\\\\\\\ M\ HHE
JEdit o i-_}::pt‘v': on Jutops
(WM, YIEY
2 PEE-WN
({RET SHIRTL,BM) Delete
[BOX . Feplace
{ SHADE _BEE36) Switch
N TRERION (3
{EYAL (CREATEREGION fyout
) Urndo
SCREENWIDTH 2 Find
BN Swap
Feprint
P RN R W - Edit \ o
JUOUI R B B dEditCom G\ \\
R RNaaRRAaNIY AN DA | Eval x AOROTDND o 3
SR 3 Exit
T
R
NN

Fig. 15. Editing the Rooms description by “turning the window around to get at the clockwork
on the back.” Alterations to a Room will take effect as soon as the user exits from the editor for
that Room.

streams, and other objects difficult to save. For this reason it is necessary to
create an abstracted description of each Room such that the Room could be
largely reconstructed from the description. Although the issues here are those
farthest removed from the central mission of the Rooms system, they are also
the most complex to program. Entries can be provided to users’ initialization
profiles so that, even when the user starts up a completely new system, the same
Rooms structure will be created, complete with text editors open to the same
files, etc. For the few cases in which this is not possible (e.g., an application not
registered with the system), dummy windows still appear with indications of
original titles to aid the user in remembering where he or she was. A facility is
provided to allow users to save or load selected Rooms as a mechanism to enable
them to design and exchange window designs and applications.

4. DISCUSSION

In Rooms, we adopted the multiple-virtual-workspace solution to the small-
screen problem. This solution is used in conjunction with other techniques:
Windows can be opened and closed, shrunk and overlapped, even moved

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

238 . D. A. Henderson, Jr., and S. K. Card

off-screen within the same virtual workspace. In addition to the analysis pre-
sented above, our use of the multiple-virtual-workspace solution also reflects
our experience with an earlier window manager prototype, called BigScreen
(Figure 16), in which we explored the large single-virtual-workspace technique.
We observed that windows laid out in this space tended to cluster into those
necessary to carry out particular tasks, and that user movement quickly reduced
to simple jumps into easily named areas on the plane (e.g., MAIL). To put it
another way, the windows tended to get organized around tasks (generic tasks
like mail reading or specific projects), and the user mainly just wanted to switch
among familiar tasks. Task switching seemed to have a nonspatial representation
in the user’s mind: Tasks were easy to name (“read the mail”), but hard to locate
in space (Is mail north or south of here?). In fact, the relative arrangement in
space of the tasks was largely irrelevant, and the geometrical constraints entailed
by arranging the task windows on a two-dimensional plane were just a nuisance.
We found ourselves building accelerators (both spatial overviews and nonspatial
pop-up menu lists) for task switching. The conceptual step to Rooms was small,
essentially dropping the single extended workspace that was a nuisance and
retaining the multiple spatial contexts that worked well. It should be noted,
however, that there may be applications with a very different mental structure
for the user (e.g., browsing unfamiliar documentation or computer-aided design)
in which either the spatial proximity or physical analog properties of a large
virtual workspace could be used to advantage.

As in other systems in which not all of the information is visible at any given
moment, the Rooms system faced the questions of (1) navigation and (2)
simultaneous access to separated information. We now contrast the design
solutions employed in Rooms with those of other systems.

Navigation. Rooms provides a pop-up menu listing the Rooms and an Overview
showing pictograms of all Rooms and their Placements. This is like the Smalltalk
Project Browser or, more particularly, the Cedar desktop overview. Chin’s Room
system, by contrast, has no such Overview. Qur experience suggests that navi-
gation tends to be easier in a multiple-virtual-workspace system than in either a
large single workspace or a hypertext system. In a large single workspace, an
overview picture of the workspace tends to make the details of the overview
picture too small to use. In a hypertext system, the workspace is fragmented into
s0 many pieces that either the entire structure is too large to show, or, although
it can be shown, the details of the overview graphics are too small to use or the
user must settle for partial browsers (e.g., the user lays out the structure for one
type of link). In a multiple-virtual-workspace system like Rooms, Smalltalk
Projects, Cedar desktops, or CCA, the multiple workspaces provide a level of
aggregation appropriate for overview displays.

Like hypertext systems, Rooms does provide (in the Overview) for querying
the connectivity of the structure. Rooms also provides a trace of the user’s
motions through the space via its use of Back Doors. This is similar to the
dynamic stack of Chin’s Room system, but it has the advantage of not requiring
any additional mechanism within the system, since Back Doors are Interlisp-D
windows (and so can have actions associated with input events) just like any
other Door. Finally, Rooms provides Doors, parallels for which exist in many

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

‘a0Bds3I0M 93} Ul UO1}BIO[
QU0 UBY) 3I0W Ul MOPULM JUIBS 3Y) 3ABY
0} PodU Y} JO asnBIA(AI0j0BISI)ESUN
paIapIsuod sem wNsks sry], (soryderd
punoi8yoeq sswooy Suidesaid) suon
-BO0| powIBU AJIJUSP! O} pPasn aIv SMOP

—egeen o pug— -um pue ‘(sjeued sswooy Suidesaid)
, 9AOW J0U Op OWIBIJ Ay} Ul SMOPUIA\
rpmiwes §2 reasds 1aslgng 1 .

D.umm.».mw—b..:um.WMC.‘—U@_&NFCEOW 05 1 Bcvnmg ~°.~&H~°° Q.—.ﬂa cm QM&GSQ@H B°m> QJ&
) [TE S48 S BT IS TV Y 020010108 1 Suruonyisodar Aq 10 (swooy Surdesaid)

O T A3 420 212 TR Ss 122 pI-o8essam ; s :
QT A E3[3HI58 312 B UMY (0L (seyleg 1058 [T K90l UL T UONINY [W0LT uomBI0| pawiBu B BUn9[Es Aq Iayjne

TIRTIST 98 120 AT ‘L jo »Bwssem LI 28670081 88100 LT TR 21w d [.

NI9g 11008 I AS]eNeg Stule A ucn ity t03-s1das-ut 114 mm”_u_w”mﬂ 98220 L1 W CHIINIEY Pl ., MOIA 3} S9AOWN Iasn I, AﬂMﬁSowu
Jentwag 20 Jeads 1og asfgng {ar Tm.m_uww D.umq..anmﬁ"vwmv.w..:-_ %?wémw\:%mm P ?wo& wnuv MITA JUBIIND Y JO uoIys
ULJ0J FARS RAIRE A {1 26T e art] AT g AooNiad ol wogd paateasd [-od ay) puB ‘(4+ M payIvw) SUOIIBIO[

T
QO AS[ONISE STUIS BN (YIeg-uIn1sy

powBU ‘smopulm Jo sweidojord surejuod
MITAIBA0 9y, ‘(199u9d do} 98) mopuim

s 212l don e Al z . v I W puas asmoag [0I3u0d 8y} ut pajussard si sgedsyiom
2 75 Tieutuat eawatag sindasy o R ” (AD) @ Lt) e : 3y} JO MeIAIeA0 UY ‘a0BdSYIOM [BMMIA

TABYI £:5) YU 1IBYJLEPR] IOy jumnL0) . m o
L Fve LR Ml i A 93I8] © JO BAIB [IBWX 9y} JO MIIA PaUIBL
[s484% agp] JEULW3; LeLdadg oLy 0 ¢ B SMOYS ‘Stmoo)] 03 Iosmmoaid B8 ‘wa)

[s4eu> 535] JEULWAS $3 L€123d5

-sAs [ejusmiadxe uearogdg oY) woiy
afewnt uaaros sIy I, ‘userogdig 91 ‘i

[a2a00 WAL (L

“WasAS SWOOY aY) oYM 3deds Jo asn ysiag|
B 8 p[nosm sty [, "A103091Ip & 03 SU}08UUOD SB Yons ‘S)$B) UOWWO0D I0J sweldold [[ews [[ed Yo€a SuU0Nq 9y], "SINOMOYs
I0j aoeds UQAIDE BY) 85N 0} ISSN B SI[(BUA 30BAS UIDIIS AIOW JO AJN[IQE[TBAR 2AT)09JJ@ oyl moy Jo ofdurexy 11 S

ViV Q- INM SIDNTYIITU-MOANIM

IR AUNINIM WS4 (A} drolb u

Lo
TUBININCALINT -MM - 3ISENR-M0ARTA- HD

Q0 SLIM3UDELENT -Wke dTINY

CIHIRD aNINeL TN -

Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention . 241

other systems (often even named “doors”). Some systems limit the functionality
of these doors to motions within the structure of the system (in Smalltalk
Projects and many others the doors move only up and down the hierarchy). In
Rooms, doors support movement, as in hypertext systems, to any other Room
and even to the Overview.

Simultaneous access to separate information. An advance of Rooms over pre-
vious systems is in the mechanisms worked out to share individual windows
among workspaces through Placements and to share collections of windows
through inclusion. In Smalltalk Projects, windows are partitioned among the
workspaces. They cannot easily occur in several workspaces at the same time.
Cedar multiple desktops does have a facility for allowing this, similar to our
Placements, but the interface mechanisms that allow the user to take easy
advantage of this facility are not developed. In large virtual-workspace systems,
like Dataland, and in distortion systems, information can be moved among work
areas, but only at the expense of destroying existing arrangements. This difficulty
also appeared in our large virtual-workspace system BigScreen and was a factor
in our progressing to the Rooms design.

Our early use of the Rooms system suggests the following ways in which it
seems to impact the use of screen space: (1) A greater amount of information is
kept in the total workspace (e.g., more windows and larger windows); (2) screens
are less crowded (because information is distributed among workspaces, each
related to a single task); and (3) users find new ways of consuming screen space
for their convenience, particularly by using accelerators for common tasks.

With the pressure for screen space reduced, we have discovered a tendency to
use some of this extra space to reduce the time required to do common tasks.
Figure 9a shows one such use: a Room with several mail browsers already laid
out. Normally, the user would reduce these browsers to icons or close them
altogether. But, with a special mail Room, the browsers can be left open, ready
for instant use, both saving considerable time and allowing the user to have a
better overall picture of the incoming mail. Furthermore, because the layout will
not be disturbed by the next task, the user can afford to spend more time carefully
arranging the windows in the Room for maximum productivity. Another example
is Figure 17. Here the user has created special “buttons” (icons that execute
arbitrary code when selected) for a number of tasks. The buttons, which can be
created in seconds, function like macrooperators and seem to boost user efficiency
substantially.

5. CONCLUSION

We would argue that a major purpose of research into human-computer inter-
action is to discover and analyze key constraints that are the drivers of human
performance and to use the representation of the problem gleaned from that
analysis as tools for thought in design.

In the present case our analysis concludes that part of the “electronic messy-
desk problem” derives from a screen-space resource contention. The severity of
this contention depends on screen size and on the locality of window reference
for the activities in which the user is engaged. We have attempted to use the

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

242 . D. A. Henderson, Jr., and S. K. Card

representation of the problem provided by this analysis as the basis of a design
for a virtual-workspace system Rooms. In the course of a design there arise a
number of issues that must be faced in order to maintain the viability of the
design. In Rooms these arise from navigation among workspaces, from simulta-
neous access to information in different workspaces, and in tailoring Rooms for
particular application and appearance.

Complementing this derivation of design from theory are new perspectives on
theory from experience with implementing and using designs. In the present case
the emergent needs for sharing windows and sets of windows and the support
needed for navigation have elaborated the structure of the phase-and-transition
window faulting model. These insights, if not simply artifacts of the particular
design, can offer new grist for our theoretical mill. We believe that these two
processes, theory to design, design to theory, must complement one another for
good design—or good theory.

ACKNOWLEDGMENTS

The resource-contention theory on which the design of Rooms is based derives
from work done jointly with Misha Pavel and Joyce Farrell. The authors would
like to thank Melissa Monty for discussions on the relevance of task switching
to workspaces, John Maxwell and Dan Swinehart for discussions on Cedar
windows, and Sue Booker for advice on graphics.

REFERENCES

1. BoLt, R. A. The Human Interface. Lifetime Learning Publications, Belmont, Calif., 1984.

2. CARD, S. K., AND HENDERSON, D. A, JR. A multiple virtual-workspace interface to support
user task switching. In CHI '87 Conference on Human Factors in Computing Systems (Toronto,
Canada, Apr. 6-9). ACM/SIGCHI, New York, 1987.

3. Carp, S. K., PaveL, M., AND FARRELL, J. Window-based computer dialogues. In Human-
Computer Interaction—Interact ‘84, B. Shackel, Ed. North-Holland, Amsterdam, 1985,
pp. 239-243.

4. CHAN, P. P. Learning considerations in user interface design: The Room model. Tech. Rep.
CS-84-16, Dept. of Computer Science, Univ. of Waterloo, Ontario, Canada, 1984.

5. DENNING, P. J. The working set model for program behavior. Commun. ACM 11, 5 (May 1968),
323-333.

6. DENNING, P. J. Virtual memory. ACM Comput. Surv. 2, 3 (Sept. 1970), 153-189.

7. DENNING, P. J. Working sets past and present. IEEE Trans. Softw. Eng. SE-6, 1 (Jan. 1980),
66-84.

8. DISESsA, A. A principled design for an integrated computational environment. Hum.—-Comput.
Interaction 1, 1 (Jan. 1985), 1-47.

9. DONAHUE, J., AND WIDOM, J. Whiteboards: A graphical database tool. ACM Trans. Off. Inf.
Syst. 4, 1 (Jan. 1986), 24-41.

10. ENGELBART, D. C., AND ENGLISH, W. K. A research center for augmenting human intellect. In
Proceedings of the AFIPS Fall Joint Computer Conference, vol. 33 (San Francisco, Calif,,
Dec. 9-11). AFIPS Press, Reston, Va., 1968, pp. 395-410.

11. FEINER, S., NAGY, S., AND VAN DAM, A. An experimental system for creating and presenting
interactive graphical documents. ACM Trans. Graph. 1, 1 (Jan. 1982), 59-77.

12. FISHER, S. S., MCGREEVY, M., HUMPHRIES, J., AND ROBINETT, W. Virtual environment display
system. In Proceedings of the 1986 Workshop on Interactive 3D Graphics, F. Crow and S. M.
Pizer, Eds. (Chapel Hill, N.C., Oct.). ACM, New York, 1986. To be published.

13. FURNESS, G. Generalized fisheye views. In CHI ‘86 Conference on Human Factors in Computing
Systems, M. Mantei and P. Orbeton, Eds. (Boston, Mass., Apr. 14-18). ACM/SIGCHI, New
York, 1986, pp. 16-23.

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention - 243

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

GOLDBERG, A. Smalltalk-80: The Interactive Programming Environment. Addison-Wesley,
Reading, Mass., 1984.

HaLAszZ, F., MoraN, T., AND TRIGG, R. NoteCards in a nutshell. In CHI ‘87 Conference on
Human Factors in Computing Systems (Toronto, Canada, Apr. 6-9). ACM/SIGCHI, New York,
1987.

Herot, C. F. Spatial management of data. ACM Trans. Database Syst. 5, 4 (Dec. 1980),
493-514.

HURST, J., AND WALKER, K., EDS. The Problem-Oriented System. MEDCOM Press, New York,
1972.

KaHN, K. C. Program behavior and load dependent system performance. Ph.D. dissertation,
Dept. of Computer Science, Purdue Univ., West Lafayette, Ind., Aug. 1976.

MADISON, A. W. Characteristics of Program Localities. University Microfilms International,
Ann Arbor, Mich., 1982.

MCGREGOR, S. The viewer window package. In The Cedar System: An Anthology of Documen-
tation, J. H. Horning, Ed. Tech. Rep. CSL-83-14, Xerox Palo Alto Research Center, Palo Alto,
Calif., 1983.

Monty, L. In Human-Computer Interaction—Interact ‘84, B. Shackel, Ed. North-Holland,
Amsterdam, 1985, pp. 603-609.

ROBERTSON, G., NEWELL, A., AND RAMAKRISHNA, K. The ZOG approach to man-machine
communication. Int. J. Man-Machine Studies 14, 4 (May 1981), 461-488.

SmiTH, D. Pygmalion. Ph.D. dissertation, Dept. of Computer Science, Stanford Univ., Stanford,
Calif., 1975.

SMrTH, D. C., IrBY, C., KIMBALL, R., VERPLANK, W., AND HARSLEM, E. Designing the Star
user interface. Byte 7, 4 (Apr. 1982), 242-282.

SPENCE, R., AND APPERLY, M. Data base navigation: An office environment for the professional.
Behav. Inf. Technol. 1,1 (Jan. 1982), 43-54.

SUTHERLAND, I. E. Sketchpad: A man-machine graphical communication system. In AFIPS
Spring Joint Computer Conference, vol. 23, 1963, pp. 329-346.

Received July 1986; revised November 1986; accepted November 1986

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

