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A key constraint on the effectiveness of window-based human-computer interfaces is that the display 
screen is too small for many applications. This results in “window thrashing,” in which the user must 
expend considerable effort to keep desired windows visible. Rooms is a window manager that 
overcomes small screen size by exploiting the statistics of window access, dividing the user’s workspace 
into a suite of virtual workspaces with transitions among them. Mechanisms are described for solving 
the problems of navigation and simultaneous access to separated information that arise from multiple 
workspaces. 
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1. INTRODUCTION 

The small size of computer screens is a more serious impediment for window- 
based workstations than is often appreciated. This paper presents a window 
manager design that effectively enlarges the user’s screen. The design is based 
on an analysis of window usage. 

Many potential knowledge-intensive computer applications require that the 
user interact with a moderately large number of objects. For example, paper 
materials, when used for writing a paper, may easily fill a dining-room table 
(Figure 1). Furthermore people tend to switch back and forth between parts of a 
project and among different activities [2, 211. For example, a person writing a 
paper on a computer workstation may nonetheless read his or her electronic mail 
daily, answer letters, perform housekeeping on the computer files, and consult 

This research was supported in part by NASA Ames under grant NAG 2-269. 
Authors’ address: Intelligent Systems Laboratory, Xerox Palo Alto Research Center, 3333 Coyote 
Hill Road, Palo Alto, CA 94304. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
0 1987 ACM 0730-0301/66/0700-0211$00.75 

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986, Pages 211-243. 



212 l D. A. Henderson, Jr., and S. K. Card

with students. Each of these tasks has its own objects, such as electronic messages
and file browsers, for the user to interact with. The result is many pieces of
information for a user to look at, manipulate, and track.

When tasks are done with paper, current information is usually managed using
a two-dimensional space in the form of a desk or often a dining table, on which
papers are grouped and arranged meaningfully. This allows information needed
for a task to be placed and ordered in temporary arrangements without the
difficult and expensive effort of assigning formal codes or names. The visual
availability of the papers in arrangement provides memory cues that organize
and substantially ease the task. This natural use of space has been sought for
computer systems in the “desktop metaphor” interface and its variants [l, 4, 24].
Unfortunately, any straightforward attempt to use computer display space in this
fashion immediately confronts the problem that the display screen is often too
small.

Computer displays are much smaller than desks or tables. Figure 2 compares
the area outlines of different computer displays with those of a desktop and a
dining table. A standard office desk has the area of 22 IBM PC screens, 46
Macintosh screens, or even 10 of the “large” 19-inch Xerox 1186 or Sun-3 screens.
A dining table is the size of 57 PC screens, 119 Macintosh screens, or 27 19-inch
screens. And, if one were to include the effects of resolution, gray scale, and color
in the computation, the comparison would be even more extreme.

A number of techniques have been proposed for overcoming the small-screen
problem. These can be roughly divided into four categories: (1) alternating screen
ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.
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Fig. 2. Superimposed outlines of different workspaces. The crosshatched area shows the 
size of an 8%by-ll-inch page. Desks and dining tables are very much larger than even 
large displays. If display resolution were taken into account, the comparisons would be 
much more extreme. 

usage, (2) distorted views, (3) large virtual workspaces, and (4) multiple virtual 
workspaces. 

Alternating screen usage. The user can simply switch the allocation of screen 
space from one application to another. The Xerox Star [24], for example, provides 
for storing documents in file drawers to be fetched and reopened as needed. The 
original Macintosh was a more extreme case, allowing only one application to be 
on the screen at a time. 

Distorted views. Another way of gaining space is to distort the objects in the 
workspace. One of the oldest techniques for doing this, first appearing in Small- 
talk, is the use of icons [23]: Windows are shrunk to small pictures that remind 
the user of the original window. Overlapping windows, also derived from Small- 
talk [ 141, can be considered a distorting technique: Windows are allowed to cover 
each other leaving only a portion to remind the user of what lies behind. Icons 
and overlapping windows are probably responsible for making the electronic 
desktop metaphor possible at all. But, as Figure 3 shows, in many applications 
they are not enough. When the need for screen space outstrips the space available, 
overlapping windows can create an “electronic messy desk” in which the windows 
interfere with one another. More recently, “fish-eye” distortions have been 
explored by Furness [13] and Spence and Apperly [25]. The idea is to force all of 
the objects to fit into the screen space by allocating space to objects on the basis 
of their intrinsic importance and the user’s current focus of attention. Parts of 
some objects may be clipped or their dimensions distorted to cause them to fit. 
The Boxer system [8] is a different sort of distorted-view system. A spatial box 
metaphor is used to represent many semantic notions of containment. The boxes 
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are nested in a hierarchy. Individual boxes can either appear expanded or shrunk 
to a symbol, depending on where the user is in the hierarchy. 

Large virtual workspaces. Instead of forcing all of the objects to fit on the 
screen, another technique is to arrange them in a single large virtual workspace 
much larger than the screen. The screen is treated as a movable viewport onto 
this space. Sketchpad [26] was one of the earliest graphical programs to use this 
technique. Many other systems have since developed their own versions. In 
Dataland [ 11, color pictorial and textual data are arranged in two dimensions. 
The user has three screens, one for an overview of the whole space, one for a 
detailed view of some portion of the space, and one touch screen for control. The 
user can translate or zoom his or her detailed view. As the user zooms closer to 
the data, more detail is revealed. In each of these systems, the data are passive- 
the user cannot interact with the data other than to view them. By contrast, the 
Cedar Whiteboard system [9] also provides translation and zooming over a large 
workspace, but individual data elements can lead to opening application windows. 
At the extreme of the virtual workspace systems are head-mounted displays 
(e.g., the NASA helmet [12]), which monitor user head and body movements to 
give the user a complete simulated 3D space. 

Multiple virtuul workspaces. The simulation of a single large workspace is 
natural, but carries over to the system some strong constraints of physical space- 
only a limited number of things can be adjacent to any object, for example, and 
the space required for the objects and their shapes puts strong constraints on 
how the space can be arranged and how densely it can be packed. An alternative 
to a single virtual workspace is to have multiple virtual workspaces, that is, 
geometrically oriented workspaces linked to each other, perhaps nonspatially. 
An example is Smalltalk Projects [ 141. Each project contains a number of views 
and, when active, takes up the whole screen. Projects are arranged hierarchically, 
with subprojects represented in their parents as windows through which the 
projects can be entered: these windows are called ProjectViews, or (informally) 
doors. More direct access to all the projects can be created through browsers, 
which permit referencing by name all the projects at once. In the CCA system 
[l, 161 (a descendent of Dataland), whenever a user zooms close enough to a port, 
he or she is swept through into a subworkspace. Like Smalltalk Projects these 
subworkspaces are arranged hierarchically. A third example of multiple virtual 
workspaces is the Cedar programming environment multiple desktop overview 
[20]: 16 desktops are shown in miniature. The user selects which desktop to enter 
from this overview. Finally, in Chan’s UNIX’-based Room’ system [4], each 
workspace contains a set of collected icons that provide actions appropriate for 
carrying out a particular task: either to move to another workspace (doors) or to 
start a new process for the task the icon specifies. Moving to another workspace 
provides access to other icons. 

1 UNIX is a trademark of AT&T Bell Laboratories. 

*We did not discover the existence of the similarly named system “Room” (Chan’s Master’s thesis 
at the University of Waterloo [4]) until after we had publicly demonstrated our Rooms system at the 
AAAI conference in August 1986. To avoid confusion in this paper, we refer to Chan’s system as 
“Chan’s Room system.” 
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A more complex organization for multiple virtual workspaces than the tree- 
oriented systems described above is the Feiner et al. electronic book [ll]. Pages 
in the book (each separate workspaces) are organized into subchapters and then 
chapters. Pages may contain pictures, any of which can be active in preset ways. 
Among other things, this provides single-action access to other pages of the book. 
Pictures can be used in different scales, another variant on the distortion 
technique. 

At the extreme of increasing complexity of structure are the hypertext systems, 
characterized by small, often textual, networks of workspaces connected with 
arbitrary patterns of typed links. The earliest of these was NLS [lo]. More recent 
examples are PROMIS [17], ZOG [22], and NoteCards [ 151. PROMIS and ZOG 
display a single node at once; NLS provides access to a subtree of nodes, screen 
space permitting; and NoteCards provides access to any arbitrary set of nodes. 
Motion among the nodes is by traversing links. 

The above techniques make progress toward solving the small-screen problem, 
but precipitate two new problems, which arise when not all the information is 
visible on the screen at once: (1) the problem of navigation (how to find objects 
in the workspace) and (2) the problem of arranging simultaneous access to 
separated information. 

The problem of navigation. This is the user’s problem of finding the way to 
information without getting lost. In large virtual workspaces with a strong 
physical model (Dataland, Whiteboard, etc.), the spatial analogy is a powerful 
space organizer. Thus these systems base much of their navigation on translating 
and zooming and may provide both global and local views [l]. As in unfamiliar 
cities, however, it may still be possible to get lost or not find what one is looking 
for. In systems with multiple virtual spaces (e.g., Cedar, Smalltalk Projects), an 
overview can also be provided if the number of virtual workspaces is not too 
large. In hypertext systems (e.g., Electronic Book, NoteCards) the task is harder. 
Here, the navigation issue is not aided by a strong physical model, and the 
separate nodes are related by a tangle of links. Visual presentation of the links 
may be more confusing than enlightening. One solution is presentations of local 
connectivity (Electronic Book, NoteCards); another is browser presentations of 
nodes (Smalltalk Project Browser, Electronic Book chapter structure, NoteCards 
Browser). 

Simultaneous access to separated inform&ion. It is often necessary to bring 
together two or more pieces of information from separated parts of the workspace. 
In fact, the same piece of information may even be logically associated with more 
than one part of the workspace. In some systems, particularly those with a strong 
spatial model (e.g., Dataland), this presents the difficulty of having to destroy 
the old organization to gain the new. Of course, one can make copies, but copies 
have coordination difficulties if the information can change. Distortion (fish-eye 
views, icons, overlapped windows) provides another solution: The arrangement 
remains fixed, while the distortion can change to make the desired information 
simultaneously accessible. Sharing information (the same picture can be used on 
different pages in the Electronic Book) is another solution, one requiring more 
sophisticated information structuring. In the extreme, hypertext systems (e.g., 
ACM Transactions on Graphics, Vol. 5, No. 3, July 19% 
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NLS, NoteCards) provide for multiple linkings, which, in turn, provide multiple 
clusterings through separate views. 

In the system we propose, our object is to prototype a workstation window 
manager that allows users to operate with larger collections of objects. Although 
a number of systems have developed techniques for mitigating the small-screen 
problem, no generally accepted framework for understanding the problem itself 
has yet emerged. As part of the process of advancing these techniques, we wish 
to begin building an understanding of the problem to aid us. 

2. ANALYSIS OF DESKTOP INFORMATION USE 

Instead of just developing another system to mitigate the small-screen problem, 
it is useful to construct some analytical understanding of the key constraints 
acting upon desktop information use. From this understanding we can gain 
abstractions with which to organize the design space and gain insight into 
promising regions of the design space for siting a design. 

Basically, our analysis is that (1) the high overhead of moving and reshaping 
windows that users must often suffer with overlapped window systems derives 
from a severe screen-space resource contention lying just below the surface, but 
that (2) we can partially overcome this resource contention by designing a virtual 
workspace manager that exploits the statistics of window reference. 

2.1 The Small-Screen Problem 

Informally, the resource contention can be described by the following gedunken 
experiment: Imagine the task of writing a paper using a dining-room table. 
Drafts, figures, references, outlines, and notes can be spread on the table in a 
way that makes them easily accessible as the writer proceeds. Imagine the same 
task now done on an office desk. There is still considerable workspace, but 
perhaps some of the information must be piled together, necessitating occasional 
flipping through piles. Now imagine the task on a very tiny desk. Much of the 
writer’s time must be devoted to thrashing about searching through papers: New 
papers dredged up top will cover other papers still in active use, and these, in 
turn, will need to be dredged up and will cover other papers in use. In addition 
to the immediate time consequence of thrashing, the ensuing chaos will tend to 
alter the task itself, pushing the writer toward more formal methods of accessing 
information, such as file folders and note cards, which have their own overheads: 
time to categorize, memory for categories, and conceptual ambiguities. 

More formally, an analysis of resource contention leading to “thrashing” 
behavior is available from the study of virtual-memory operating systems [7], 
and we can apply some of its features to the small-screen problem. In a virtual- 
memory operating system, programs are run in a large, virtual-address space. 
This virtual-address space resides on some secondary storage medium, such as a 
rotating disk, much larger (and also much slower) than the physical address 
space available in the main computer. When reference is made to a page in 
virtual memory not actually resident in the computer’s main memory, a “page 
fault” occurs: A page in physical memory is written back to disk if it has changed, 
and the referenced virtual-memory page is copied to main memory in the vacated 
slot. 

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986. 
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CLUSTER 2 

CLUSTER 3 

Fig. 4. Locality sets and possible transitions between them. Each circle represents 
a cluster of page locations that tend to be referenced together in time. The line 
represents the locus of program control as it transitions back and forth between 
such clusters. Programs spend most of their time in clusters of page references, 
represented by the circles, and relatively little time (from 2 to 5 percent) in transitions 
between’clusters, yet typically half of the page faults occur during the transitions. 
(After Madison [19, p. 261.) 

Two principal factors determine the success of this scheme: (1) the size of the 
main memory available relative to the size of the program and (2) the statistical 
distribution of the program’s references to virtual memory. With respect to the 
latter, a program that exhibits locality of reference, that is, a program whose 
references to virtual-memory page locations cluster together in time, causes fewer 
page faults and hence requires much less time to run (or much less main memory 
to run at a given speed) than one whose references are randomly distributed. 
Fortunately,‘most programs progress in distinct locality phuses [7]: That is, most 
programs progress by making frequent references to a small set of virtual-memory 
locations (called a locality set) followed by transition to another small set of 
virtual-memory locations (Figure 4). Page faults tend to be relatively sparse 
within phases, but dense within transitions. For example, Kahn measured several 
programs [18, cited in 71 and found that the programs in his sample spent 
98 percent of their time within some phase. But during the 2 percent of the time 
they were in transition, 40-50 percent of the page faults occurred [7, p. 721. 

Reasons for locality in program reference behavior are not difficult to find. 
First, programs typically consist of blocks of memory that are executed more or 
less sequentially. Second, programs often have loops that iterate over the same 
locations. Finally, programs usually involve bursts of computations on related 
variables or data structures. 

The reference characteristics of programs, then, essentially derive from two 
factors: (1) the sequential storage structure of most program code as assembled 
by a compiler and (2) the way in which references to the same variables tend to 
be clustered in time. It is important to note that locality of reference is strongly 
ACM Transactions on Graphics, Vol. 5, No. 3, July 1986. 
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evident, even when this latter case of reference to variables is considered 
alone [7]. 

For virtual-memory operating systems, the size of main memory relative to the 
size of the virtual memory and the high cost of references to secondary memory 
are key constraints that drive the performance of the system. Main memory is a 
limited resource that is in contention. Operating-system algorithms attempt to 
exploit locality of reference in programs to reduce memory contention. Since 
memory contention is often a performance driver, reducing it can have a major 
impact on system performance as a whole. 

For windows (as well as for paper-laden desks), the size of the available 
workspace relative to the needs of the task to be done is a key constraint that 
drives user performance on the task. Small display screens or desks are limited 
resources that are in contention. But, if users exhibit locality of window reference 
and a system can make explicit use of it, we can likely make a major improvement 
in window manipulation overheads that derive from the small-screen problem. 

2.2 Window Locality Sets 

Evidence for locality of window reference seems clear enough from protocols we 
have been able to examine of users interacting with an overlapped window 
system. In the first place we have informally observed such behavior: Users are 
often seen to use a group of windows for a while, then delete or shrink most of 
them, and then begin building another set. More systematically, the distribution 
of window interreference intervals (the number of window references between 
two references to the same window) is shifted heavily to the low end (compared 
with what would be expected for random window referencing), indicating that 
the user in this protocol often went back and forth among a small set (five or 
fewer) of windows (see Figure 5). 

Other ways of looking at user window behavior suggest a similar conclusion. 
We can identify approximately the locality set of windows in active use at a given 
time by computing Denning’s working set [5-71. The working set consists of those 
windows referenced in the last T references. Figure 6 shows this metric computed 
for a user programming Interlisp-D on the basis of those window events detectable 
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Fig. 6. Computation of Denning’s working set for win- 
dow references made by a user reading mail and program- 
ming in Interlisp-D: - - - -, 2’ = 6; -, T = 14. Com- 
putation is based on detectable system events. The waxing 
and waning of the number of windows in the computation 

*interval T is clearly visible, but this way of estimating 
window locality sets does not show well the boundaries of 
the phase transitions. (From Card, Pavel, and Farrell [3].) 

by the system. The figure shows a window working set varying between 2 and 10 
windows for the fragment of behavior examined. 

However, a better metric for our purpose is Madison’s bounded locality interval 
(BLI) [19]. This metric overcomes two problems with the classical working-set 
measure: (1) that it depends on an arbitrary parameter T, the reference interval, 
and, more important, (2) that the interval size T is fixed, with the consequence 
that the boundaries between phases are not well defined [19]. The bounded 
locality interval is based on the top elements of an LRU (least recently used) 
stack that have all been referenced at least once since their formation (see [19]). 
The BLI metric has been shown by Madison to correspond well to intuitive 
notions of a phase. Figure 7 shows the BLI metric computed over 60 minutes of 
behavior on the Interlisp-D system. The computation indicates the existence of 
from zero to five windows in a locality set at any time for this fragment of user 
behavior. (Had the user referenced windows randomly, Figure 7 would be blank.) 

These four indicators-simple observation, interreference interval, Denning’s 
working set, and Madison’s bounded locality interval-cannot yet be considered 
definitive pending further studies and refinements, but they do at this point all 
suggest in unison that users exhibit locality of window reference and that, 
therefore, as in the case of virtual-memory operating systems, mechanisms that 
exploit this statistical property of user behavior might be developed. 

2.3 Tasks and Tools 

It is not difficult to suggest reasons for the locality-of-window-reference behavior 
observed above. When there is some task to be done, such as reading mail, writing 
a paper, or creating a program, the user gathers a number of tools for doing it. In 
ACM Transactions on Graphics, Vol. 5, No. 3, July 1986. 
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Fig. 7. Computation of the Madison’s bounded locality interval (BLI) metric. The 
computation is based on a user programming Interlisp-D. In order to capture part 
of the user’s visual reference to windows, windows in the enviornment have been 
programmed to “gray out,” becoming barely readable after 10 s. The windows are 
instantly restored if the user selects them with the mouse or the system uses them. 
Each rectangle is a locality set plotted according to the number of windows in the 
set. The abscissa is time in milliseconds. If window references did not exhibit locality, 
there would be no rectangles. With this technique the boundaries of the window 
locality sets are easier to see. The technique shows promise, with refinement, for 
being able to describe complicated patterns of window use. 

most window systems, these tools are each embedded in a window (e.g., mail- 
browser windows for mail; text-editor and file-browser windows for paper writing; 
program editors, debuggers, and measuring instruments for programming). As 
the user moves back and forth among these tools while doing the task, the tool 
windows form a locality set. 

A task, from the point of view of the user, will therefore tend to correspond to 
a phase from the point of view of window reference statistics. Task switching 
will correspond to a transition, and we expect it to lead to heavy window faulting. 
The design of the Rooms system is based on the notion that, by giving the user 
an interface mechanism for letting the system know he or she is switching tasks, 
it can anticipate the set of tools/windows the user will reference and thus preload 
them together in a tiny fraction of the time the user would have required to open, 
close, and move windows or expand and shrink icons. A further benefit is that 
the set of windows preloaded on the screen will cue the user and help reestablish 
the mental context for the task. (We might even say that knowledge faulting in 
the user is thereby reduced.) 

3. DESIGN OF THE ROOMS SYSTEM 

The window-management system we describe provides the user with a suite of 
roughly screen-sized workspaces called Rooms. The overall scheme is shown 
schematically in Figure 8. Each Room contains a set of window Placements, each 
of which indicates a window, a shape, and other presentation information 
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Fig. 8. Schematic structure of the Rooms system. Users’ work is distributed 
among several Rooms, each Room containing a main task. Rooms can be 
included in other Rooms. Each Room contains a set of Placements Place- 
ments indicate windows and Room-dependent presentation information for 
the window. 

(i.e., how a given window is to appear in a particular Room). A key feature of 
Placements is that two Placements may refer to the same window, allowing 
windows to be shared among Rooms. Rooms may also be included in other Rooms 
as a mechanism for allowing the sharing of groups of windows among workspaces. 
Our system is implemented in Interlisp-D and uses the Interlisp-D window 
package for basic window manipulations. 

Figure 9 shows two typical Rooms. The Room in Figure 9a has been laid out 
with mail-browsing windows and a mail-reader window. It has a prompt window 
for messages (the long black rectangle), two icons with controls for the mail 
system, a command typescript window for typing LISP functions, a clock, and 
Doors linking this Room directly with others. If the user selects the Door labeled 
PROG with the mouse, then the screen changes to the Room in Figure 9b; that 
is, the user has the illusion of moving to Room PROG. This latter Room is set 
up for doing programming and at the time of entering contains windows in which 
editing with the LISP structure editor is in progress. It also contains a Baclz Door 

(the Door in Figure 9b in reverse video) showing the Room from which the user 
came (and to which the user could return by means of a single mouse selection). 
To help the user navigate, the system has an Overview (Figure 10) that displays 
miniature versions of all the Rooms in the total user workspace. Any Room can 
be entered from the Overview, and indeed Placements can be copied, deleted, 
moved, shaped, and examined at full size from this Overview. Figure 11 shows 
the set of Rooms and direct Door links of an actual user workspace. The diagram 
has an obvious similarity to the phase and transition diagram of Figure 4. 

The design for Rooms is based on our analysis of the key constraints on user 
window behavior as developed in the previous section. Since on present evidence 
much of the user housekeeping for an overlapped window system derives from 
contention for limited screen space, the design gives the user more virtual space. 
Since we expect the use of that space to be characterized by phases and transitions 
ACM Transactions on Graphics, Vol. 5, No. 3, July 1986. 



Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention 223 

organized around tasks, this total virtual workspace is divided into multiple 
virtual subworkspaces through Doors (or the Overview). Our basic analysis, 
therefore, has helped suggest a promising position in the design space at which 
to site a design. But the design decisions to which we are thereby led have further 
entailments of their own. The design for Rooms reflects solutions that arise not 
only from the basic analysis, but also from these entailments-issues that may 
have little relation to the original problem that Rooms was designed to solve, but 
whose resolution is necessary for the system to be viable. As is the case for all 
systems in which information is not all visible on the screen at once, the Rooms 
system must face entailed issues that derive from (1) problems of navigation and 
(2) problems of arranging simultaneous access to separated information. A third 
group of entailed issues focuses around (3) simple user tailoring of system 
appearance and behavior. The major entailed design problems and their solutions 
are summarized in Table I. It is simplest to begin with problems of simultaneous 
access. 

3.1 Simultaneous Access to Separated Information 
Some windows, such as the invocation of a text editor on a particular file, are 
strongly associated with a particular task. Others, such as a clock or the command 
typescript window, are relatively independent of different tasks. Each Room 
tends to be organized around some dominant task, such as writing a paper or 
reading the mail. The windows contained in a Room provide the tools for the 
task and, indirectly, the material to which the tool is being applied (e.g., a window 
containing a text editor opened to a particular file). But tools and tasks can be 
combined in different ways. A single-purpose mail Room might have just mail- 
transport tools, mail files, and mail sorters in it, whereas a project Room might 
have a mail reader, a text-editor window, and a programming editor. So, although 
it is easy to recognize the global need for some sort of simultaneous access to the 
same windows across different Rooms, there are, in fact, a number of specific 
cases to be sorted out before sharing can actually be accomplished. These can be 
classified as (1) sharing tools across tasks, (2) workspace-dependent window 
presentations, (3) sharing collections of tools across tasks, and (4) carrying tools 
to another workspace. 

3.1.1 Sharing Tools across Tasks 

ISSUE 1 [Multiple instances of windows]. Some windows need to appear in more 
than one workspace. 

DESIGN SOLUTION. Multiple Placements of a window. 

The desire to have versions of the same window appearing in more than one 
Room forces us to the abstraction of a Placement. A Placement is a window 
together with location and presentation information. 

Placement = Window + LocationInRoom + PresentationAttributes. 

A Placement generalizes the concept of a window, separating the tool aspects of 
it (the fact that a particular set of editing commands work inside it) from its 
appearance on the screen. 
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Fig. 10. Overview. The Overview contains pictograms of the Rooms arranged alphabetically. 
It also contains a message window for communicating with the user and buttons for saving 
and restoring the set of Rooms. This Overview shows a CONTROL Room that is included 
in every Room except the HELP Room. Windows contained in a Room because they are 
part of an included Room are rendered in gray. EXPANDing the window in the HELP 
Room provides the user with a one-page illustrated system manual. 

3.1.2 Workspace-Dependent Window Presentations. Windows shared by dif- 
ferent workspaces may need to have different locations in different workspaces. 
This is immediately obvious in application, but would not be possible if the 
Rooms system merely contained lists of the windows present in each Room. 

ISSUE 2 [Workspace-dependent shared-window positions]. Shared windows 
need to have independent positions in different workspaces. Repositioning a shared 
window in one workspace should not affect its position in arwther workspace. 

DESIGN SOLUTION. Position is part of a Placement, not a window. 

The independent location problem is also solved by the Placement mechanism. 
A Placement contains an x, y position for the bottom left corner of a particular 
window in the particular Room. 

It is possible to go beyond the simple location of shared windows in the 
different Rooms to other aspects of presentation. For example, it may be desirable 
to have a text-editor window be large in one Room, but small in another. Or we 
may want the text-editor window to be squarish in one window, but tall and thin 
in another so as to fit into a differently arranged space. Or we may wish a window 
to have drop shadows in one Room, but not in another. 
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Fig. 11. Transitions among Rooms in a user’s workspace. The diagram shows which Rooms have 
doors leading to other Rooms. It is an analog of Figure 4. Transitions through the Overview or pop- 
up menu are not shown. 

ISSUE 3 [Workspace-dependent shared-window presentation]. The Shape, size, 
icon shrink hxation, drop-shadow attributes, and other U.Sp?Cts of the presentation 
of shared windows need to vary according to which Room the windows are in. 

DESIGN SOLUTION. Presentation attributes are properties of Pkzcements, not 
windows. 

Fortunately, the Placement mechanism is again a good solution to this issue. 
The Placement for each window in a Room contains slots for the presentation 
dimensions on which windows can vary. 

3.1.3 Sharing Collections of Tools CKFOSS Tasks. The issues above have derived 
from cases in which we want the same windows to have location and presentation 
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Table I. Summary of Design Issues That Arise in Going from the Virtual Workspace Idea 
to a Usable System 

Issues Design solution 

(1) Interface issues of simultaneous access to separated information 
Issue 1 Multiple instances of windows Placements 
Issue 2 Workspace-dependent window locations Placements 
Issue 3 Workspace-dependent window presentations Placements 
Issue 4 Collections of windows Room inclusion 
Issue 5 Bringing windows to other workspaces Baggage 
Issue 6 Keeping windows along with user Pockets 

(2) Interface issues of navigation 
Issue 7 Reversibility of workspace transition 
Issue a User orientation 

Issue 9 Showing workspace connectivity 

Back Doors 
(1) Pop-up menu of Rooms 
(2) Overview 
(3) Expanding pictograms 
Wiring diagrams 

(3) Interface issues of tailorability 
Issue I1 Rooms redecoration 

Issue I2 Unanticipated modifications structure 

Issue 13 Saving/restoring workspaces 

(1) Maintain normal LISP 
(2) Persistence of modifications 
(3) Pop-up menu 
(4) Overview commands 
(1) Editable Rooms data 
(2) Layout language 
Save/restore buttons 

aspects that can be different in each workspace. But there are other cases in 
which just the opposite is true. An example is that we may wish to define a 
collection of windows to serve as a sort of control panel for many Rooms. Such 
a collection might contain a command typescript window (where typed-in 
commands can be evaluated), a clock, indicators for system performance, and 
Doors to some standard places. 

ISSUE 4 [Collections of windows]. Some groups of windows need to be defined 
as a collection whose location and positional attributes remain constant across 
workspaces. Changes to any of the windows need to be propagated to all workspaces 
containing them. 

DESIGN SOLUTION. Room inclusion. 

Our solution to this problem is to allow Rooms to be included in other Rooms. 
A control panel is designed by making up a Room with the clock and other useful 
tools positioned together. We then make this Room an Inclusion of each Room 
that is to share the collection of windows. Resulting Rooms, when displayed to 
the user, will contain the combined set of windows. Figure 10 shows a 
control panel Room marked CONTROL that is contained in another Room. 
Figures 9a and b contain the windows in this control panel. 

3.1.4 Carrying Tools to Another Workspace. So far we have not discussed how 
sharing of windows across workspaces arises. How can the user take a window 
that is in one workspace and carry it to another? 
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ISSUE 5 [Carrying windows to other workspaces]. How can a set of windows be 
copied from one workspace to another? 

DESIGN SOLUTION 1. Baggage. 

Our solution is to allow the user to carry some windows with him or her as the 
user transits to another workspace. The metaphor is that the user has Baggage 
that can be packed full of windows (actually, copies of Placements). The user 
presses a key while selecting a Door, which puts the user into a mode (with 
suitable feedback) in which he or she can point to all the windows wanted as 
Baggage. The Baggage goes through the Door with the user, and the windows 
assume their former positions, but in the new Room. The user can then reposition 
the windows in the new Room as desired. 

DESIGN SOLUTION 2. Overview move and copy commands. 

If the user is in the Overview or willing to go to the Overview, then the MOVE 
and COPY commands can be used to move or copy Placements rapidly from one 
Room to another. 

Finally, there are applications in which the user wishes to define windows that 
are present no matter which workspace is used. 

ISSUE 6 [Keeping windows along]. In some applications windows need to be 
associated with the user rather than the workspace. 

DESIGN SOLUTION. Pockets. 

The user can declare one Room to act as Pockets. This Room will be tempo- 
rarily included in any Room the user enters. Thus, whichever windows are placed 
in the user’s Pockets will be presented (at the same location and with the same 
presentation attributes) in all Rooms. A special application is that control panels 
can be included in a user’s Pockets, if the user wants all Rooms to have the same 
control panel. 

3.2 Interface Issues of Navigation 
The Rooms system attempts to reduce space contention on the screen by 
distributing the user’s windows into window locality sets in virtual workspaces. 
But this very fragmentation of the space creates a navigation problem: How can 
one keep track of the windows no longer visible and find one’s way through the 
Rooms? If this challenge is not met, we shall only have replaced the electronic 
messy desk with an electronic maze. To keep the overall strategy viable, interface 
solutions must be found for this problem. Actually, the overall issue of navigation 
contains several subissues: (1) returning to a Room, (2) general orientation and 
finding other Rooms, (3) finding windows, and (4) finding which Rooms connect. 

3.2.1 Returning to a Room. Frequently a user wishes to return from a present 
Room to the immediately prior Room. This can be a problem because Doors are 
one-way only. It can be even more of a problem if the user has forgotten the 
name of the previous Room or even what was being done before an interruption. 

ISSUE 7 [Reversibility of workspace transitions]. How can the user return to a 
previous workspace? 
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DESIGN SOLUTION. Back Doors. 

Each time a user enters a Room, a Door to the previously occupied Room is 
created and placed at a certain location. This Door is shown in reverse video to 
indicate that it is a Door back to the previous Room. An example is the reverse- 
video Door at the bottom left corner of Figure 9b. Further, the Door is destroyed 
after one use, and no Back Door is created when a Back Door is used to change 
Rooms. Back Doors reduce the task of returning to a previous Room from a 
major navigational undertaking to a trivial matter. 

Other solutions are possible, but have disadvantages: All Doors could be 
bidirectional. The problem with this solution is that, when a Door is created in 
one Room, it would require placement of the Door in both the current visible 
Room and the indicated invisible Room. Either we would have to be willing to 
allow the new Door to appear over whatever happened to be in the other Room, 
or we would have to have an automatic window placement scheme (not a bad 
idea, but one beyond our current project). Also, Doors back to included Rooms 
would be conceptually obscure. Another problem with bidirectional Doors is that 
we want Back Doors to occur whether we entered the Room through a visible 
Door, through the pop-up menu, or through the Overview. In our system the 
Back Door is destroyed after one use because the meaning of Back Doors is to 
help the user return to where he or she just was, and multiple Back Doors would 
confuse this concept or complicate it with more interface mechanism. 

3.2.2 General Orientation and Finding Other Rooms. A related problem is that 
the user can become disoriented. As the number of Rooms increases, the user 
can find it difficult to remember what Rooms exist. If there were to be a Door 
from every Room to every other Room, the Doors themselves would soon become 
unmanageable and consume inordinate amounts of screen space. Yet, without a 
fully connected topology, the space begins to become complex and difficult to 
remember-an electronic maze. 

ISSUE 8 [User orientation]. How can users remember (or discouer) the route to 
particular workspaces? 

DESIGN SOLUTION 1. Pop-up menu of Room names. 

The solution from within a Room is to have a pop-up menu that gives the 
names of the other Rooms (see Figure 12). The menu is a reminder of what 
Rooms exist, permitting selection of the one the user wants to go to. This solution 
is cheap in terms of response time, and, just as important, it is always available, 
even if the user deletes all the windows on the screen. However, it does not 
remind the user of the contents of the different Rooms. 

DESIGN SOLUTION 2. Oueruiew. 

General orientation is achieved through the Overview. Figure 10 shows the 
Rooms Overview screen. The main feature of the Overview is a set of Room 
pictograms, reduced pictures of the Rooms, arranged in alphabetical order. All 
rooms are displayed, and the Room pictogram size is adjusted as Rooms are 
added and deleted. Windows within each Room are represented as rectangular 
window pictograms. From the Overview the user is reminded of the overall layout 
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Fig. 12. Pop-up menu for invoking Rooms functions. Each of the small left triangles 
indicates where further expansion of the menu is possible (a standard Interlisp-D 
device). The menu has been expanded to show the main functions available through 
the menu. Since this menu is always available (by pressing the right mouse button 
when the cursor points to the screen background), the user is able to invoke Rooms 
commands even if all of the windows in a Room are deleted. 

of a Room. The user can select a Room to enter by holding down the OPEN key 
while selecting a Room with the mouse. Design solution 1 (a pop-up menu) is 
fast, but gives only the names of the other Rooms. Design solution 2 (the 
Overview) takes a little longer, but gives the user much more information. The 
choice of one of these depends on the user’s state of knowledge. 

3.2.3 Finding Windows. Although the Room name and the shape and arrange- 
ment of window pictograms in the Overview definitely help the user’s orientation, 
still more help is often needed to enable the user to locate particular windows or 
to be reminded of what particular pictograms mean. 

ISSUE 9 [Window identification]. How can the user identij,particulur windows 
in other Rooms from the Overview? 

DESIGN SOLUTION. Expanding pictograms. 

The Rooms system permits the user to “expand in place” window pictograms 
pointed at by the mouse (Figure 13). It is worth noting that, whereas the Overview 
diagram is a space-multiplexed way of showing the whole view, the EXPAND 
key is a time-multiplexed technique. For reasons of speed, legibility, and versi- 
militude, the window is shown at full scale, as indicated by the selected Placement, 
instead of the information in the Room being scaled to fit the pictogram. 
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Fig. 13. Example of an EXPANDed window. EXPANDing windows is a time-multiplexed technique that 
allows the user to learn a large amount of information about the multiple workspaces in the system without 
crowding the display. 

3.2.4 Finding Which Rooms Connect. From the Overview diagram, it is difficult 
to discover which Rooms have Doors to, or are included in, which other Rooms. 

ISSUE 10 [Workspace connectiuity]. How can the user see the connections 
between Rooms? 

DESIGN SOLUTION. Wiring diagrams. 

A solution to this problem is to trace out on the display a diagram showing the 
connections between Rooms. Figure 14 shows an example of such a diagram 
(DOORS-OUT, the set of Rooms to which the subject Room has Doors). Several 
such diagrams are available DOORS-OUT, DOORS-IN, INCLUDES- 
ROOMS, and INCLUDED-IN-ROOMS. Because of the complexity of the 
possible connections between Rooms and the desire not to rearrange the Overview 
display to simplify the connection lines (which would drastically decrease Room 
pictogram size), having the user interrogate one Room at a time is more successful 
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Fig. 14. Wiring diagrams. This is another time-multiplexed technique 
that allows the user to see which windows are connected to which others. 

than asking for all the connections simultaneously. This is another case in which 
we fall back to the time-multiplexing of information, since showing all connec- 
tions at the same time reduces the display to a tangle of lines. 

3.3 Interface Issues of User Presentation Tailorability 

User’s workspaces change continually. Provision must therefore be made for 
users to reconfigure their workspaces easily: altering windows; adding and delet- 
ing Doors; creating, deleting, and renaming Rooms. All these can be expected to 
occur in the course of normal work. 

3.3.1 Manipulating Rooms, Windows, and Doors 

ISSUE 11 [Room redecoration]. How can users manage the creation and deletion 
of Rooms, windows, Doors, etc? 

DESIGN SOLUTION 1. Maintain a normal Interlisp-D environment. 

The Rooms system is designed so that users have the illusion that they are in 
a normal Interlisp-D window environment. Thus they can engage in all the 
normal Interlisp-D window manipulations: creating, destroying, copying, and 
moving windows or shrinking them into icons. Closing a window that exists in 
more than one Room brings up a menu giving the user the choice of deleting 
only this Placement or of deleting all Placements and closing the window itself. 

DESIGN SOLUTION 2. Persistence of window modifications. 

A related part of the design solution is that small changes users make in the 
course of their work persist over entering and leaving Rooms. When reentering 
a workspace, the user finds it arranged just as it was when he or she left it (the 
contents of shared windows may well have changed, of course). Modifications to 
a Room are accurately reflected in the Overview. 
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DESIGN SOLUTION 3. Pop-up menu. 

Here, as elsewhere in the system, we maintain the principle that a basic set of 
system capabilities (creating Doors, going to other Rooms, going to the Overview, 
recovering lost windows, etc.) (see Figure 12) is maintained on a pop-up menu 
that is always available. One reason for this principle is to protect the user: Since 
completely free to design the workspace, the user could delete all the Doors from 
this workspace, including the Door to the Overview. Or the user could create a 
Door to a new Room, then enter it; this would leave him or her in a completely 
blank Room. In such circumstances the pop-up menu provides the user with 
adequate rescue controls. It does so without violating another principle, that the 
user should be free to determine the total physical appearance of a Room. Doors 
are thus accelerators that trade screen space for faster speed. In fact, the Overview 
just continues further along this trade-off, trading the entire screen space for 
rapid manipulation. This trade-off among space, speed, and robustness is the 
basic reason for having more than one solution to design issues. 

DESIGN SOLUTION 4. Overview commands. 

Some operations by users involve more than one Room, for example, moving 
windows from one Room to another or copying a Room. To make these easier, 
the Rooms system provides a set of commands available in the Overview 
(Table II). Generic commands (COPY and DELETE) can apply either to a 
Placement of a window in a Room or to a Room itself, according to which button 
on the mouse is used to select the object. Other commands (MOVE, RESHAPE, 
RENAME) apply only to one or the other. 

An easy way to create a new Room, with a layout and Placements the user 
likes, is to press COPY and then select an existing Room. The system asks for 
the name of the new Room, then creates the new Room, and rearranges the 
Overview to show it (reducing the size of Room pictograms if necessary). The 
user could then delete any unwanted windows in the new Room by holding down 
DELETE while selecting the window pictogram with the mouse “Placement 
button” (left button). A similar mechanism can be used to include one Room in 
another. 

3.3.2 Extended Behavior and Appearance. Although Rooms provides a number 
of single methods by which users can tailor their workspaces, we believe it is 
prudent to provide for a system’s natural evolution by supplying escape hatches 
that enable more sophisticated and daring users to extend the system or modify 
it to serve their own purposes. Rooms descriptors are the mechanisms by which 
the advanced users in the community can achieve new effects and extensions 
quickly without rebuilding the system or understanding all its parts. Successful 
features are then given more general user interfaces. 

ISSUE 12 [Unanticipated modifications]. How can we provide a means for 
systems programmers to evolve the system by creating more complex effects? 

DESIGN SOLUTION. Editing of Room descriptors. 

Each Room can have associated with it expressions that will be evaluated in 
conjunction with certain significant events (creating a Room, leaving a Room, 
ACM Transactions on Graphics, Vol. 5, No. 3, July 1986. 



Rooms: The Use of Multiple Virtual Workspaces t? Reduce Space Contention l 235 

Table II. Overview Commands 

Command Mode key(s) Description 

Overview commands for manipulating Placements’ 

Move MOVE, M 

Shape SHAPE, S 

COPY COPY, c 
Delete DELETE, D 
Expand EXPAND, ? 

Overview commands for manipulating Roomsb 

Enter OPEN, 0 

New NEW, N 
Edit EDIT, E 

COPY COPY, c 

Rename RENAME, R 
Delete DELETE,D 
Doors-out DOORS-OUT 

Doors-in DOORS-IN 

Includes INCLUDES 

Included-in INCLUDED-IN 

A Placement is moved within a Room or from one 
Room to another Room. 

A Placement is reshaped within a Room or into 
another Room. 

A copy of a Placement is made in another Room. 
A Placement is deleted from a Room. 
The window associated with a Placement can be 

temporarily viewed as the Placement indicates. 

The Overview is left and the indicated Room 
entered. 

A name is requested and the Room is renamed. 
A structural description of the Room is made avail- 

able for editing. The changes take effect when 
the editing is finished. More than one Room may 
be modified at a time, permitting copying struc- 
ture from one description to another. 

A name is requested and a copy of the Room is 
made. 

A name is requested and the Room is renamed. 
The Room is deleted. 
The set of Rooms to which Doors in the indicated 

Room lead is displayed in Figure 14. 
Like Doors-out, but the set of Rooms that have 

doors into the indicated Room is displayed. 
The set of Rooms that the indicated Room includes 

is displayed in a diagram similar to Figure 14. 
Like Includes, but the set of Rooms in which the 

indicated Room is included is displayed. 

Overview commands for manipulating collections of Rooms’ 

Save SAVE A set of Rooms is indicated by selecting maps 
(default is all the Rooms), a tile name is re- 
quested, and a description of the set of Rooms is 
written onto the file. 

Restore RESTORE (AUGMENT) A file name is requested, and a set of Rooms is 
(Augment) reconstituted from the descriptions on that file. 

The set of current Rooms is replaced (extended) 
with this reconstituted set. 

’ These commands are issued by depressing a mode key and buttoning the pictogram for the Placement 
with the left button on the mouse. 
b These commands are issued by depressing a mode key and buttoning the map for the Room with 
the right button on the mouse. 
’ These commands are issued by selecting button-shaped windows appropriately labeled. 

placing a window, hiding a window, saving a Room on a file, or restoring a Room). 
These are made available to the (advanced) user by making a descriptor of the 
editable Room through the normal structured program editor. A description of 
the background for the Room, an expression in a layout language (Table III), is 
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Table III. Layout Language for Rooms Background Graphics 

Specification 

(WHOLEBACKGROUND shade) 
(WHOLEBACKGROUND bit map) 
(BOX shade region operation) 

(FRAME shade region width operation) 

(BITMAP bit-map region operation) 

(TESSELLATE bit-map region operation) 

(TEXT string font position operation) 

(BORDER shade) 

(IF (condition spec spec) . . .) 

(EVAL action) 

(COMMENT.. .) 

Description 

Shades the whole background. 
Tessellates the whole background with the bit map. 
Shades a region using the graphic operation. Graphics 

operations are replace, paint, erase, and invert. 
Frames a region with a shaded frame of a particular 

width using the graphic operation. 
Places the bit map clipped by the region using the 

graphic operation. 
Tessellates the region with the bit map using the graphic 

operation. 
Places the text in the font starting at the position using 

the graphic operation. In this operation graphics op- 
erations include an extension for describing drop 
shadows and smearing. 

Sets the border region (from the edge of the screen to 
the bezel of the display) to be the shade. 

Carries out the specifications contained in the first 
clause whose condition is satisfied. Conditions are 
Interlisp-D forms treated as predicates. 

Escape to Interlisp-D: Action is an Interlisp-D form that 
is evaluated, presumably for its graphic effect on the 
background. 

A message to humans that has no effect on the back- 
ground graphics. 

Notes: 
The background graphics for a Room is described by a list of graphic specifications that are 
executed in order, each affecting the results of the ones carried out before it. 

All arguments can be either literal (for simple expression of the common cases) or forms to be 
evaluated (another escape clause to Interlisp-D). 

also part of the Room descriptor. By holding down the EDIT key while pointing 
to a Room in the Overview, the user can “turn the pictogram of the Room around 
to reveal the clockwork mechanisms on the back” (Figure 15). On completion of 
editing, the system checks the structure of the Room descriptor to provide error 
protection before rendering the Room. This editing facility has been used to 
build elaborate graphical backgrounds and for other tasks, such as checking 
whether certain files are loaded before entering a Room. 

3.3.3 Saving and Restoring. Finally, the system will not be successful unless 
it is possible to save, restore, and add to a user’s suite of workspaces via 
information stored on files. If a system crash or reload/reinitialization means 
that the user must rebuild a suite of Rooms from scratch, few users will persist, 
and Rooms will not be successful in helping users to manage their screen space. 

ISSUE 13 [Saving/restoring workspaces]. How can a user save and restore 
workspace? 

DESIGN SOLUTION. Save/restore buttons and Room descriptions. 

It should first be realized that a Room cannot be saved directly. Rooms contain 
complex structures including windows, large bit maps, tile pointers, network 
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Fig. 15. Editing the Rooms description by “turning the window around to get at the clockwork 
on the back.” Alterations to a Room will take effect as soon as the user exits from the editor for 
that Room. 

streams, and other objects difficult to save. For this reason it is necessary to 
create an abstracted description of each Room such that the Room could be 
largely reconstructed from the description. Although the issues here are those 
farthest removed from the central mission of the Rooms system, they are also 
the most complex to program. Entries can be provided to users’ initialization 
profiles so that, even when the user starts up a completely new system, the same 
Rooms structure will be created, complete with text editors open to the same 
files, etc. For the few cases in which this is not possible (e.g., an application not 
registered with the system), dummy windows still appear with indications of 
original titles to aid the user in remembering where he or she was. A facility is 
provided to allow users to save or load selected Rooms as a mechanism to enable 
them to design and exchange window designs and applications. 

4. DISCUSSION 

In Rooms, we adopted the multiple-virtual-workspace solution to the small- 
screen problem. This solution is used in conjunction with other techniques: 
Windows can be opened and closed, shrunk and overlapped, even moved 
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off-screen within the same virtual workspace. In addition to the analysis pre- 
sented above, our use of the multiple-virtual-workspace solution also reflects 
our experience with an earlier window manager prototype, called BigScreen 
(Figure 16), in which we explored the large single-virtual-workspace technique. 
We observed that windows laid out in this space tended to cluster into those 
necessary to carry out particular tasks, and that user movement quickly reduced 
to simple jumps into easily named areas on the plane (e.g., MAIL). To put it 
another way, the windows tended to get organized around tasks (generic tasks 
like mail reading or specific projects), and the user mainly just wanted to switch 
among familiar tasks. Task switching seemed to have a nonspatial representation 
in the user’s mind: Tasks were easy to name (“read the mail”), but hard to locate 
in space (Is mail north or south of here?). In fact, the relative arrangement in 
space of the tasks was largely irrelevant, and the geometrical constraints entailed 
by arranging the task windows on a two-dimensional plane were just a nuisance. 
We found ourselves building accelerators (both spatial overviews and nonspatial 
pop-up menu lists) for task switching. The conceptual step to Rooms was small, 
essentially dropping the single extended workspace that was a nuisance and 
retaining the multiple spatial contexts that worked well. It should be noted, 
however, that there may be applications with a very different mental structure 
for the user (e.g., browsing unfamiliar documentation or computer-aided design) 
in which either the spatial proximity or physical analog properties of a large 
virtual workspace could be used to advantage. 

As in other systems in which not all of the information is visible at any given 
moment, the Rooms system faced the questions of (1) navigation and (2) 
simultaneous access to separated information. We now contrast the design 
solutions employed in Rooms with those of other systems. 

Nuuigution. Rooms provides a pop-up menu listing the Rooms and an Overview 
showing pictograms of all Rooms and their Placements. This is like the Smalltalk 
Project Browser or, more particularly, the Cedar desktop overview. Chin’s Room 
system, by contrast, has no such Overview. Our experience suggests that navi- 
gation tends to be easier in a multiple-virtual-workspace system than in either a 
large single workspace or a hypertext system. In a large single workspace, an 
overview picture of the workspace tends to make the details of the overview 
picture too small to use. In a hypertext system, the workspace is fragmented into 
so many pieces that either the entire structure is too large to show, or, although 
it can be shown, the details of the overview graphics are too small to use or the 
user must settle for partial browsers (e.g., the user lays out the structure for one 
type of link). In a multiple-virtual-workspace system like Rooms, Smalltalk 
Projects, Cedar desktops, or CCA, the multiple workspaces provide a level of 
aggregation appropriate for overview displays. 

Like hypertext systems, Rooms does provide (in the Overview) for querying 
the connectivity of the structure. Rooms also provides a trace of the user’s 
motions through the space via its use of Back Doors. This is similar to the 
dynamic stack of Chin’s Room system, but it has the advantage of not requiring 
any additional mechanism within the system, since Back Doors are Interlisp-D 
windows (and so can have actions associated with input events) just like any 
other Door. Finally, Rooms provides Doors, parallels for which exist in many 
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other systems (often even named “doors”). Some systems limit the functionality 
of these doors to motions within the structure of the system (in Smalltalk 
Projects and many others the doors move only up and down the hierarchy). In 
Rooms, doors support movement, as in hypertext systems, to any other Room 
and even to the Overview. 

Simultaneous access to separate information. An advance of Rooms over pre- 
vious systems is in the mechanisms worked out to share individual windows 
among workspaces through Placements and to share collections of windows 
through inclusion. In Smalltalk Projects, windows are partitioned among the 
workspaces. They cannot easily occur in several workspaces at the same time. 
Cedar multiple desktops does have a facility for allowing this, similar to our 
Placements, but the interface mechanisms that allow the user to take easy 
advantage of this facility are not developed. In large virtual-workspace systems, 
like Dataland, and in distortion systems, information can be moved among work 
areas, but only at the expense of destroying existing arrangements. This difficulty 
also appeared in our large virtual-workspace system BigScreen and was a factor 
in our progressing to the Rooms design. 

Our early use of the Rooms system suggests the following ways in which it 
seems to impact the use of screen space: (1) A greater amount of information is 
kept in the total workspace (e.g., more windows and larger windows); (2) screens 
are less crowded (because information is distributed among workspaces, each 
related to a single task); and (3) users find new ways of consuming screen space 
for their convenience, particularly by using accelerators for common tasks. 

With the pressure for screen space reduced, we have discovered a tendency to 
use some of this extra space to reduce the time required to do common tasks. 
Figure 9a shows one such use: a Room with several mail browsers already laid 
out. Normally, the user would reduce these browsers to icons or close them 
altogether. But, with a special mail Room, the browsers can be left open, ready 
for instant use, both saving considerable time and allowing the user to have a 
better overall picture of the incoming mail. Furthermore, because the layout will 
not be disturbed by the next task, the user can afford to spend more time carefully 
arranging the windows in the Room for maximum productivity. Another example 
is Figure 17. Here the user has created special “buttons” (icons that execute 
arbitrary code when selected) for a number of tasks. The buttons, which can be 
created in seconds, function like macrooperators and seem to boost user efficiency 
substantially. 

5. CONCLUSION 

We would argue that a major purpose of research into human-computer inter- 
action is to discover and analyze ky constraints that are the drivers of human 
performance and to use the representation of the problem gleaned from that 
analysis as tools for thought in design. 

In the present case our analysis concludes that part of the “electronic messy- 
desk problem” derives from a screen-space resource contention. The severity of 
this contention depends on screen size and on the locality of window reference 
for the activities in which the user is engaged. We have attempted to use the 
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representation of the problem provided by this analysis as the basis of a design 
for a virtual-workspace system Rooms. In the course of a design there arise a 
number of issues that must be faced in order to maintain the viability of the 
design. In Rooms these arise from navigation among workspaces, from simulta- 
neous access to information in different workspaces, and in tailoring Rooms for 
particular application and appearance. 

Complementing this derivation of design from theory are new perspectives on 
theory from experience with implementing and using designs. In the present case 
the emergent needs for sharing windows and sets of windows and the support 
needed for navigation have elaborated the structure of the phase-and-transition 
window faulting model. These insights, if not simply artifacts of the particular 
design, can offer new grist for our theoretical mill. We believe that these two 
processes, theory to design, design to theory, must complement one another for 
good design-or good theory. 
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